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Executive Summary 
In the absence of a well-accepted, mathematical description of how units of material respond to 
one or more external actions, scientists must often rely upon empirically-derived models to make 
predictions. These models are often employed to model very complex phenomena, with an 
unfortunate side-effect that intuition, as to the values of particular model parameters, may not 
serve to guide their use. Given our increased reliance on modeling and simulation to make 
predictions in the absence of experimental data, it befits the scientific and engineering 
communities to explore and report upon uncertainty quantification techniques applied to 
previously adopted (or at least well-accepted) empirical models that derive from or pertain to 
substantial experimental data sets. This report represents a collection of three methodologies 
aimed at assessing the predictive capability of the empirical thermal conductivity model adopted 
by the nuclear fuel performance code, FRAPCON-3.4. Each of these methodologies considers 
the effect of uncertain parameters – a plausible reality in the context of empirically-derived 
models – on the ability of the model to predict uranium dioxide conductivity data from open 
literature sources. The results lead the authors to question the predictive capability of the 
FRAPCON model for predicting the thermal conductivities associated with irradiated fuel 
samples. The report concludes with a preliminary examination of Idaho National Laboratory’s 
(INL) nuclear fuel performance code, BISON, developed under INL’s Multiphysics Object 
Oriented Simulation Environment (MOOSE). (Approved for unlimited, public release on 
October XX, 2012, LA-UR-12-2XXXX, Unclassified) 
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1 Introduction 
In the absence of a well-accepted, mathematical description of how units of material respond to 
one or more external actions (e.g. temperature fluctuations), scientists must often rely upon 
empirically-derived models (e.g. polynomials) to make predictions. These predictions may be 
interpolatory or extrapolatory in nature, but irrespective of this, the predictions derive from a 
model that employs little-to-no physics: a potentially dangerous situation if the phenomena being 
modeled are, in reality, complex processes. This situation can be especially disconcerting when 
limited data sets are available for development of the model or when the model does not 
generalize well to data sets that become available after its development. 

Given our increased reliance on modeling and simulation to make predictions (both interpolatory 
and extrapolatory) in the absence of experimental data, it befits the scientific community to 
explore and report upon uncertainty quantification techniques applied to previously adopted (or 
at least well-accepted) empirical models that derive from, or pertain to, substantial experimental 
data sets. Such studies, while more applied in nature, provide guidance for conducting studies on 
codes that are still under development. This report represents a collection of three methodologies 
aimed at assessing the predictive capability of the empirically-derived thermal conductivity 
model adopted by the nuclear fuel performance code, FRAPCON-3.4 (referred to as the 
“FRAPCON model”). The three methodologies adopt an optimization-based, a Bayesian 
inference based, and an info-gap decision theory based approach, respectively. Each considers 
the effect of parametric uncertainty on the ability of the model to predict uranium dioxide (UO2) 
thermal conductivity data from open literature sources. Following is an overview of the historical 
development of the FRAPCON model that is being considered in this report. 

1.1 FRAPCON-3.4 Thermal Conductivity Model 
The ceramic nuclear fuel, UO2, used in light water reactors is known to be a very poor 
semiconductor. The heat generated by fission is transferred by thermal conduction primarily by 
way of lattice vibrations. The dependency of the thermal diffusivity (or thermal conductivity, 
that is the inverse of thermal diffusivity) on temperature is traditionally expressed as 

𝐾95 =
1

𝐴 + 𝐵𝑇
. (1) 

In this equation, 𝐴 represents the effect of phonon-impurity scattering processes, and 𝐵 
represents the effect of phonon-phonon scattering processes [1]. This simple dependency worked 
well for the thermal conductivity estimation of fresh fuels, as well as of irradiated fuels. There 
are various excellent papers on the development of an appropriate thermal conductivity model 
for UO2. For example, Ronchi et al. modify Equation (1) based on new measurements, to 
account for ambipolar and radiation contributions to thermal conductivity. The radiation 
contribution was found to be small relative to the lattice vibration and ambipolar contributions. 
As a result, nuclear fuel performance codes like FRAPCON include a thermal conductivity 
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model of the following form: 

𝐾95 =
1

𝐴 + 𝐵𝑇
+
𝐸
𝑇2

exp �−
𝐹
𝑇
�, (2) 

where 𝐴 = 0.0452, 𝐵 = 0.000246, 𝐸 = 3.5𝐸9, and 𝐹 = 16361. Note that the ambipolar 
contribution is accounted for by the right-most term and becomes important at temperatures 
above 1900K. Figure 1 presents the available experimental thermal conductivity data associated 
with fresh fuel samples (see Appendix A), along with the nominal FRAPCON thermal 
conductivity model given by Equation (2). It is this model that will be considered in the context 
of predicting thermal conductivity for fresh fuel samples. 

 

Figure 1: Experimental temperature vs. thermal conductivity plots for fresh fuel samples, with nominal 
FRAPCON model, as given by Equation (2) 

Several authors have conducted reviews of UO2 thermal conductivity models (see e.g. [2,3]). 
These papers consider various data sets and subsequently suggest coefficients that are not 
necessary consistent (from reference to reference). With new measurements available, these 
parameters change on almost a yearly basis. For example, FRAPCON-3 and FRAPCON-3.4 
implement completely different thermal conductivity models. 

Regardless, the measurement of thermal conductivity of UO2 is not straightforward, and in situ 
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measurements during irradiation are not available. Typically, these measurements begin by 
irradiating the fuel at certain irradiation temperatures that may vary in a nuclear core, depending 
upon the location. The fuel is then cooled and small samples are analyzed in the laboratory by 
heating the sample to a desired temperature. Note that this measurement process also introduces 
annealing effects above certain temperatures. Furthermore, the fission process constantly 
produces defects that effect the correctness of 𝐴 and 𝐵. These findings led Ronchi et al. to 
suggest an alternative model for the lattice contribution [1]: 

𝐾95 =
1

𝐴(𝑇irr,𝑇ann,𝐵𝑢) + 𝐵(𝑇irr,𝑇ann,𝐵𝑢)𝑇
, (3) 

where 𝐴 and 𝐵 are now functions, and 𝑇irr, 𝑇ann, and 𝐵𝑢 are the irradiation temperature, 
annealing temperature, and burnup (as a percentage), respectively. FRAPCON-3 used a thermal 
conductivity model suggested by the Lucuta et al. [3]. FRAPCON-3.4, on the other hand, claims 
that the thermal conductivity model is based on the expression developed by Ohira and Itagaki 
[4] for the Nuclear Fuels Industries. This is given as 

𝐾95 =
1

𝐴 + 𝐵𝑇 + 𝑓(𝐵𝑢) + 𝑔(𝐵𝑢)ℎ(𝑇) + 𝐶𝑇2 + 𝐷𝑇4, (4) 

where 

𝑓(𝐵𝑢) = 0.00187𝐵𝑢 (5) 

accounts for the effect of soluble fission products, 

𝑔(𝐵𝑢) = 0.038𝐵𝑢0.28 (6) 

accounts for the effect of irradiation defects, 

ℎ(𝑇) =
1

1 + 396exp(−𝑄/𝑇), (7) 

accounts for the effect of recovery of irradiation defects, and 𝑄 = 6380. Note that the electronic 
contribution (i.e. the ambipolar effects) is formulated differently in this model than in Equation 
(2). The actual thermal conductivity model implemented in FRAPCON-3.4 is given as 

𝐾95 =
1

𝐴 + 𝐵𝑇 + 𝑓(𝐵𝑢) + �1 − 0.9exp(−0.04𝐵𝑢)�𝑔(𝐵𝑢)ℎ(𝑇)
+
𝐸
𝑇2

exp �−
𝐹
𝑇
�. (8) 

While 𝑓(𝐵𝑢), 𝑔(𝐵𝑢), and ℎ(𝑇) are retained from Equation (4), a new term 
�1 − 0.9exp(−0.04𝐵𝑢)� is introduced in FRAPCON-3.4. There is no good physics argument 
provided in the FRAPCON manual as to why this new term is introduced. Furthermore, this 
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model also drops the form of the electronic contribution suggested by Ohira and Itagaki [4] and 
instead adapts the form suggested by Lucuta et al. [3], Fink [2], and Ronchi et al. [1]. Figure 2 
presents the available experimental thermal conductivity data4 associated with irradiated fuel 
samples (see Appendix B), along with the nominal FRAPCON thermal conductivity model given 
by Equation (8). It is this model that will be considered in the context of predicting thermal 
conductivity for irradiated fuel samples. 

 

Figure 2: Experimental temperature vs. thermal conductivity plots for irradiated fuel samples, with 
nominal FRAPCON model, as given by Equation (8) 

There is no a good explanation in the Ohira and Itakagi’s paper why the functions 𝑓, 𝑔, and ℎ 
should be in the form of 𝑓 + 𝑔ℎ. Their dependency on the coefficients 𝐴 and 𝐵 and their 
potential correlations are also not known. Table 1 presents the coefficients of 𝐴, 𝐵, 𝐸, and 𝐹 
recommended by different authors, indicating a large degree of variation. 

                                                 
4 The data sets labeled “Amaya et al (2002) D5 S1,” “Amaya et al (2002) D5 S2”, “Amaya et al (2010) D6 S2,” and 
“Amaya et al (2010) D6 S4” in Figure 2 are not included in the proceeding analyses due to inconsistencies identified 
by the authors. 
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Table 1: Values of thermal conductivity model parameters from different references 

Parameter 
Name 

FRAPCON
-3 

FRAPCON
-3.4 

Ohira and 
Itagaki 

Lucuta et 
al. 

Ronchi et 
al. 

Fink 

A (m-K/W) 0.0375 0.0452 0.0452 0.0375 0.06548 0.075408 
B (m-K/W/K) 2.165E-4 2.46E-4 2.46E-4 2.165E-4 0.23533 0.17692 

E (W-K/m) 4.715E9 3.5E9 - 4.715E9 6400* 6400* 
F (K) 16361 16361 - 16361 16.35 16.35 

C (W/m-K/K2) - - -5.47E-9 - - - 
D (W/m-K/K4) - - 2.29E-14 - - - 
*divided by T5/2 not T2 

The fuel companies may also have different coefficients specific to their fuels. It is expected that 
the coefficients 𝐴, 𝐵, 𝐸, and 𝐹 are calibrated from fresh fuel data first and irradiation effects are 
introduced by examining trends in the irradiated data. In this research, the authors collected as 
much data from open literature as could be found, in order to assess the model parameters, 
independent of model developers. The authors assert that the irradiation effects should be 
included in the lattice term as suggested by [1]. Instead, previous authors have introduced 
additive terms in the denominator of the thermal conductivity equation. 

1.2 Report Organization 
In this research, the authors consider the thermal conductivity models in FRAPCON-3.4 (i.e. 
Equations (2) and (8) for the fresh and irradiated fuel samples, respectively) and attempt to 
understand the correlation issues between 𝐴 and 𝐵 from Equation (2) and 𝑓, 𝑔, ℎ, and the extra 
term from Equation (8). Section 2 presents the results obtained from optimizing the parameters 
of the FRAPCON model using a genetic algorithm, where valuable insight is gained to inform 
the assessments in Sections 3 and 4. These latter sections will focus more on UQ, approaching 
the problem from two distinct viewpoints. Section 3 adopts a Bayesian probabilistic approach, 
presenting the results of a series of Markov Chain Monte Carlo executions that yield posterior 
probability density functions of the uncertain parameters, conditioned on the available data. 
Section 4 employs a non-probabilistic approach, namely info-gap decision theory, to assess the 
“robustness” of the FRAPCON model, when the uncertain parameters are considered to be truly 
unknown quantities, centered about their nominal values. 

Following the presentation of results for the FRAPCON model, Section 5 of this report outlines a 
plan to conduct a similar study on Idaho National Laboratory’s (INL) nuclear fuel performance 
code, BISON [5], developed under INL’s Multiphysics Object Oriented Simulation Environment 
(MOOSE) [6]. In particular, the models that make use of empirically-derived coefficients to fit 
experimental data will be considered. 
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2 Genetic Algorithm Optimization Analyses 
This section reports upon the results of an effort at optimizing the uncertain parameters of the 
FRAPCON model that aims to minimize the root mean square difference between the code 
predictions and the experimental data. While the authors admit that this effort does little to 
quantify parametric uncertainty associated with the FRAPCON model, it does represent a state-
of-the-practice approach to model calibration, in that many such efforts simply rely on 
optimizing a set of model parameters (both physics- and empirically-based) to “best-fit” one or 
more data sets. The authors contend that such “blind” optimizations of model parameters can 
lead to false confidence in the predictive capability of the model (i.e. “I optimized the model 
parameters to reduce model error, so my new, optimized model must be more predictive.”). The 
authors’ concern is especially relevant when dealing with empirically-derived models, in that 
little-to-no intuition can be derived from such models. While qualitative and quantitative 
mechanisms have been proposed [7,8,9] to highlight the effects (on predictive capability) of this 
and other, similar concerns, it is nonetheless commonplace to see optimization as the de facto 
treatment for model calibration. This is not to say that optimization procedures do not have a 
place in model calibration, but rather that reliance on optimization alone results in an incomplete 
picture of the problem at best. 

2.1 Problem Formulation 
Formally, the optimization problem may be stated as 

𝐽(𝜽) = min
𝜽
𝐸RMS(𝜽), (9) 

where 

𝐸RMS(𝜽) = ��
1
𝑚𝑛

��𝐾𝑖,𝑗
exp − 𝐾𝑖,𝑗mod(𝜽)�

2
𝑚𝑛

𝑗=1

�

1/2𝑛

𝑖=1

. (10) 

In Equation (10), 𝑛 is the number of data sets, 𝑚𝑛 is the number of data points in the 𝑛th data set, 
𝐾 is the thermal conductivity of the fuel, and the superscripts “exp” and “mod” denote 
experimental data and model predictions, respectively. 

The authors adopted a Genetic Algorithm (GA) to solve the optimization problem defined by 
Equation (9). GAs are well-accepted in the numerical optimization literature for their ability to 
traverse local optima while searching for a global optimum [10]. GAs model the optimization 
problem as an evolutionary or “survival of the fittest” process, where  
“fitness” of an “individual” is measured by way of an objective function (e.g. Equation (10)). 
Individuals comprise a number of “genes” that represent the parameters over which the 
optimization is being considered; for the implementation discussed herein, the genes are simply 
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the uncertain model parameters discussed in Section 1.1. More condensed representations (e.g. 
principal components) can also be employed. 

Algorithmically, GAs begin by initiating a population of individuals, often random in nature. 
Each individual is evaluated for its fitness and ranked from highest to lowest, where the most fit 
individual(s) is carried over to the next generation (i.e. “elitism”). The “parent” individuals then 
undergo “selection” and “crossover” whereby individuals are first paired up and then swap genes 
with some fixed rate of success. The result is a new, “child” population of individuals. Note that 
the selection process does not mandate that only the most fit individuals undergo crossover (i.e. 
relatively fit and relatively unfit individuals can swap genes). The intent of the selection and 
crossover processes is to promote diversity in the population, while ultimately aiming to combine 
the most attractive features from two parent individuals into a new, child individual. Following 
crossover, the child individuals undergo “mutation” whereby a small number of genes are 
randomly perturbed, the aim of which is to prevent individuals from becoming “trapped” in local 
minima. Following mutation, the process repeats, where the child individuals become parent 
individuals, and so on. 

Particular to this report, the authors employed the GA implementation provided by the Global 
Optimization Toolbox in MATLABTM [11]. The pertinent functions adopted for the analyses 
discussed in Section 2.2 are stochastic universal sampling (or stochastic uniform) selection, 
single-point crossover, and Gaussian mutation, respectively. Stochastic uniform selection is a 
fitness-proportional selection function that is similar to roulette wheel selection [10], except that 
the wheel is spun once and the algorithm moves along the wheel in equal-sized steps to select 
parents. This eliminates the potential (although unlikely) problem encountered with the basic 
roulette wheel selection, in that a series of particularly “unlucky” spins of the roulette wheel will 
land only on low fitness individuals (becoming low fitness parent individuals). For single-point 
crossover, the algorithm simply chooses a gene index, and swaps the genes above or below that 
gene index. Lastly, the Gaussian mutation function adopts a scaled Gaussian function to perturb 
a gene from its nominal value (i.e. that resulting from crossover). MATLABTM also adopts a 
scaling factor that reduces the frequency of mutation as the number of generations increase. 
More details about the MATLABTM GA and the available functions can be found in [11]. 
Following in Section 2.2 is a presentation and discussion of the results obtained from executions 
of the GA described previously. 

2.2 Results 
The results presented in this section are organized around two sub-sections that pertain to two 
combinations of data sets and model parameters. Section 2.2.1 pertains to thermal conductivity 
data associated with fresh fuel samples, which is analyzed using the FRAPCON-3.4 thermal 
conductivity model given by Equation (2). Section 2.2.2 then pertains to thermal conductivity 
data associated with irradiated fuel samples, which is analyzed using the FRAPCON-3.4 thermal 
conductivity model given by Equation (8). 
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2.2.1 Data / Model for Fresh Fuel Samples 

This section begins by presenting Figure 3: a comparison between the experimental data and the 
model predictions from the thermal conductivity nominal, given in Equation (2). It can be seen in 
Figure 3 that for the most part, the nominal model predictions are reasonably close to the 
experimental data or, in the least, follow a trend that parallels the 45° line (solid, black line). 
Applying the GA optimization procedure outlined previously, allowing 50 percent deviation 
from the nominal parameter values, yields a very similar comparison plot, as given by Figure 4. 

 

Figure 3: Comparison between experimental data and nominal model predictions for thermal 
conductivity 



Assessing the Effect of Parametric Uncertainty on the FRAPCON-3.4 Thermal Conductivity Model 
Milestone Deliverable for the NEAMS VU Program, October 2012 

9 

Approved for unlimited, public release on October XX, 2012 LA-UR-12-2XXXX, Unclassified 

 

Figure 4: Comparison between experimental data and GA-optimized model predictions for thermal 
conductivity, allowing 50% deviation from the nominal parameter values 

The primary difference between Figure 3 and Figure 4 is that the model predictions generally 
shift upward, yielding predictions that more closely aligned with the experimental data, in the 
range from 3.0 to 7.0. A more quantitative explanation of these results is given in Table 2 and 
Table 3, where Table 2 presents the nominal parameter values and the GA-optimized parameter 
values (with relative differences, in percent) and Table 3 presents the values of the objective 
function (Equation (10)) for the nominal case and the GA-optimizations. 

The primary result of interest from Table 2 lies in disparity between the optimized values of the 
third (𝐸) and fourth (𝐹) parameters. Whereas the third parameter varies by 50 percent (i.e. the 
upper bound permitted by the GA optimization), the fourth parameter only varies by less than 
5%. The fact that these parameters are effectively at odds with each other (see Equation (2)) is 
the likely cause of this result, where it seems that the exponential dominates the behavior of the 
second term, but an alternative, sensitivity-based assessment is that the model is insensitive to 
the third parameter and very sensitive to the fourth parameter. This issue will be discussed 
further, in the context of info-gap robustness in Section 4.2.1. 

Moving on to Table 3, it is seen that the GA optimization reduces the value of the objective 
function by approximately 26%, as compared with that of the nominal model. However, it is also 
seen that when the allowable deviation from the nominal parameter values is reduced to ten 
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percent, the reduction in the objective function is nearly the same. While this may not be an 
entirely intuitive result, the GA-optimized parameter values given in Table 4 shed light on this 
result, in that the values of the first (𝐴) and second (𝐵) parameters are effectively the same (i.e. 
increasing and decreasing by approximately 8.5 percent, respectively), regardless of the 
allowable deviation. This implies that the primary mechanism by which the optimization is 
achieved is by way of varying the first and second parameters. This, together with the earlier 
observation that “model predictions generally shift upward … in the range from 3.0 to 7.0” is 
consistent however, in that the first two parameters offer the primary mechanism by which low-
temperature / high-conductivity predictions are made (i.e. ambipolar contributions, represented 
by the right-most term of  Equation (2), are insignificant at temperatures below 1900K). 

Table 2: GA-optimized parameter values, allowing 50% deviation from the nominal parameter values 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.04911 8.7% 

B (m-K/W/K) 0.000246 0.0002230 9.3% 
E (W-K/m) 3.50E+09 5.250E+09 50.0% 

F (K) 16361 17101.6 4.5% 

 

Table 3: Objective function evaluations associated with GA-optimized parameter values (fresh fuel 
parameters / data only) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 5.22 - 
GA-Opt (50%) 3.84 26.4% 
GA-Opt (10%) 3.86 26.1% 

 

Table 4: GA-optimized parameter values, allowing 10% deviation from the nominal parameter values 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.04889 8.2% 

B (m-K/W/K) 0.000246 0.0002240 8.9% 
E (W-K/m) 3.50E+09 3.850E+09 10.0% 

F (K) 16361 16296.4 0.4% 

2.2.2 Data / Model for Irradiated Fuel Samples 

As in the previous case, this section begins by presenting a comparison between the experimental 
data and the model predictions from the thermal conductivity nominal, given in Equation (8). In 
contrast to the previous section, however, is the fact that there is no consistent trend in the 
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relationship between the experimental data and the nominal model predictions. This issue is not 
resolved by the GA optimization, the analogous plot for which is presented in Figure 6. This is a 
rather unexpected and obviously disconcerting result, especially given the recent (i.e. 2010) 
adoption of this model for predicting the behavior of irradiated fuel samples.  

 

Figure 5: Comparison between experimental data and nominal model predictions for thermal 
conductivity 
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Figure 6: Comparison between experimental data and GA-optimized model predictions for thermal 
conductivity, allowing 50% deviation from the nominal parameter values 

Upon examination of Table 5, the outlook does not improve, as seven of the eleven parameters 
assume “optimal” values at either the lower or upper bound; an eighth (𝑔(𝐵𝑢)A) parameter 
assumes a value that deviates by 31.5 percent. Perhaps adopting an alternative objective function 
may be in order, but the fact that a majority of the parameters deviate significantly from their 
nominal values does little to engender confidence as to the predictive capability of the model. 
For completeness, Table 6 provides the values of the objective function for the nominal and two 
GA optimizations, for allowable deviations of 50 percent and ten percent. 
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Table 5: GA-optimized parameter values, allowing 50% deviation from the nominal parameter values 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.03096 31.5% 

B (m-K/W/K) 0.000246 0.0002450 0.4% 
E (W-K/m) 3.50E+09 1.750E+09 50.0% 

F (K) 16361 24541.5 50.0% 
f(Bu) 0.00187 0.000935 50.0% 

0.9 Factor 0.9 0.450 50.0% 
0.04 Factor 0.04 0.060 50.0% 

g(Bu)A 0.038 0.0570 50.0% 
g(Bu)B 0.28 0.2925 4.5% 
h(T) 396 198.0 50.0% 

Q 6380 6077.2 4.7% 

 

Table 6: Objective function evaluations associated with GA-optimized parameter values (irradiated fuel 
parameters / data only) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 7.19 - 
GA-Opt (50%) 6.40 11.0% 
GA-Opt (10%) 6.78 5.7% 

To connect this with the previous section, the authors employed the first four parameters 
presented in Table 5 to make predictions of the thermal conductivities associated with the fresh 
fuel samples. If the model represented by Equation (8), calibrated using the irradiated data only, 
is consistent with the underlying physics exhibited by the fresh and irradiated fuel samples, the 
predictions should be reasonably accurate. Table 7 indicates that this is not the case, as the 
predictions are actually worse than those associated with the nominal FRAPCON model. Clearly, 
calibration to the data associated with the irradiated fuel samples only is insufficient for the 
purposes of improving the model’s predictive capability. 

Table 7: Objective function evaluations associated with GA-optimized parameter values (fresh fuel 
parameters, irradiated data) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 5.22 - 
GA-Opt (50%) 5.57 -6.7% 
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To explore this issue further, a third analysis is conducted using the data associated with the 
irradiated fuel samples, whereby the first four parameters are held fixed at the values given in 
Table 4, and the remaining seven parameters are allowed to vary. Table 8 presents the values of 
the objective function associated with this analysis. The results indicate that fixing the fresh fuel 
parameters at their previously GA-optimized values still permits improvement over the nominal 
model. This goes back to an earlier statement in Section 1.1 stating  that the first four parameters 
of Equation (8) “are calibrated from fresh fuel data first and irradiation effects are introduced by 
examining trends in the irradiated data.” That said, the authors are led to question whether the 
mathematical form of Equation (8) is valid for predicting thermal conductivities associated with 
irradiated fuel samples. This question will be further explored in the subsequent sections. 

Table 8: Objective function evaluations associated with GA-optimized parameter values (irradiated fuel 
parameters / data only with fresh fuel parameters held fixed at the values given in Table 4) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 7.19 - 
GA-Opt (50%) 6.60 8.2% 
GA-Opt (10%) 7.16 < 1% 
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3 Markov Chain Monte Carlo Analyses 
In parametric Bayesian analysis, observed data 𝒚 are sampled from a distribution 𝑔(𝒚|𝜽), where 
𝑔 is a specified family of distributions (e.g. Gaussian) and 𝜽 is a collection of parameters having 
unknown values. The family of distributions g is often determined by the nature of experimental 
errors. For example, a particular fuel conductivity dataset could be modeled as follows, 

𝒚 = 𝜼(𝜽) + 𝜺 (11) 

where 𝜼(𝜽) is the vector of conductivity model outputs evaluated at model parameters 𝜽 and 
corresponding to the conditions producing 𝒚, and 𝜺 is the vector of observational errors. These 
errors are often assumed to be independent, zero-mean, Gaussian with specified standard 
deviations. In this scenario, pursued in the subsequent analyses, the family 𝑔 is multivariate 
Gaussian having mean 𝜼(𝜽) and specified standard deviations. 

In the following discussion, the sampling distribution g viewed as a function of unknown 
parameters 𝜽 (for given data values 𝒚) will be referred to as the likelihood function, 𝐿(𝜽|𝒚) ≡
𝑔(𝒚|𝜽). For varying 𝜽, higher likelihood values indicate parameter settings for which the 
conductivity model output exhibits greater consistency with the observed conductivity data 𝒚. To 
complete the Bayesian framework, initial (prior) uncertainty in the values of 𝜽 is represented by 
a distribution 𝜋, referred to as the prior distribution. In the subsequent analyses, 𝜋 is assumed to 
be a Uniform distribution on pre-specified ranges for each model parameter presented in 
Equations (2) and (8). Given observed conductivity data 𝒚, inference about 𝜽 is based entirely on 
the posterior distribution, given by 

𝜋(𝜽|𝒚) =
𝐿(𝜽|𝒚)𝝅(𝜽)

∫ 𝐿(𝜽|𝒚)𝝅(𝜽)𝑑𝜽
. (12) 

In words, the posterior distribution utilizes the conductivity data 𝒚 to update the prior uncertainty 
about 𝜽, resulting in new uncertainty quantification for 𝜽 that incorporates information from 
both prior knowledge 𝜋 and observational data 𝒚. 

In the analyses of this section, the posterior normalizing constant ∫ 𝐿(𝜽|𝒚)𝝅(𝜽)𝑑𝜽 is not 
computable in closed form, as the conductivity models are non-linear. Therefore, exact posterior 
calculations are not possible. Fortunately, technology exists for generating samples 𝜽𝑖 from the 
posterior distribution 𝜋(𝜽|𝒚). The methodology we employ is referred to as Markov Chain 
Monte Carlo (MCMC) sampling, which involves establishing the target distribution 𝜋(𝜽|𝒚) as 
the stationary distribution of a Markov Chain. The following sampling algorithm used in the 
subsequent analyses is one of many possibilities that accomplishes this goal: 

1. Set the iteration counter 𝑖 = 1 and select a starting value for 𝜽, denoted 𝜽(0). 
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2. Suppose 𝜽 has 𝑚 elements, of which the first (𝑗 − 1) have already been updated. The 𝑗th 

parameter is updated as follows. Let 𝜽𝑐 = �𝜃1
(𝑖), … ,𝜃𝑗−1

(𝑖) ,𝜃𝑗
(𝑖−1),𝜃𝑗+1

(𝑖−1), … ,𝜃𝑚
(𝑖−1)� be the 

current value of 𝜽, and propose a new value for 𝜃𝑗  (denoted 𝜃𝑗∗) by sampling from the 

specified distribution 𝑞𝑗�𝜃�𝜃𝑗
(𝑖−1)�. Taking, 𝜽∗ = �𝜃1

(𝑖), … ,𝜃𝑗−1
(𝑖) ,𝜃𝑗∗,𝜃𝑗+1

(𝑖−1), … ,𝜃𝑚
(𝑖−1)� we 

set 𝜃𝑗
(𝑖) = 𝜃𝑗∗ with probability 

min �1,
𝐿(𝜽∗|𝒚)𝝅(𝜽∗)𝑞𝑗(𝜽𝑐|𝜽∗)
𝐿(𝜽𝑐|𝒚)𝝅(𝜽𝑐)𝑞𝑗(𝜽∗|𝜽𝑐)� ; 

otherwise set 𝜃𝑗
(𝑖) = 𝜃𝑗

(𝑖−1). Once the 𝑚th parameter has been updated in this fashion, the 
𝑖th iteration has been completed and we denote the resulting sample by 𝜽𝑖. 

3. Repeat the previous step 𝑛 times, resulting in 𝑛 samples 𝜽1, … ,𝜽𝑛. 

An initial subset of iterations 𝜽𝑖 are discarded as burn-in samples, as these iterations are required 
for the Markov chain to ‘forget’ its starting value 𝜽(0) and converge to its stationary distribution 
(i.e. the posterior). It is desirable to choose a 𝜽(0) having reasonably high posterior probability. 
In our analyses, we set 𝜽(0) to the nominal values of the model parameters (see Equations (2) and 
(8)). The proposal distribution 𝑞𝑗(𝜃|𝜃𝑐) is taken to be Uniform on the interval �𝜃𝑐 − 𝑠𝑗 2⁄ ,𝜃𝑐 +
𝑠𝑗 2⁄ �. The interval width 𝑠𝑗 is chosen adaptively during the burn-in period of the MCMC 
algorithm. Specifically, the algorithm of [12] is used:  a specified nominal value of 𝑠𝑗  is 
expanded and contracted dyadically by a specified number of levels. During burn-in, the 
algorithm repeatedly cycles through each resulting level, collecting acceptance statistics. At the 
conclusion of burn-in, the acceptance statistics are used to fit a logistic regression model of 
acceptance probability versus interval width. The interval width 𝑠𝑗 is estimated by choosing the 
value corresponding to a targeted acceptance rate, approximately 40% in the subsequent 
analyses. The estimated interval widths for each parameter are then used in the above MCMC 
algorithm post burn-in to generate samples of 𝜽 from the posterior distribution 𝜋(𝜽|𝒚). For post-
burn-in samples 𝜽𝑏+1, … ,𝜽𝑛, posterior conductivity model predictions for any specified fuel 
conditions are obtained by computing 𝜼(𝜽𝑏+1), … ,𝜼(𝜽𝑛). Further information on technical and 
practical considerations for MCMC and its implementation can be found in [13]. 

Let 𝜽𝑓 and 𝜽𝑟 denote the parameters in the conductivity models of fresh (i.e. Equation (2)) and 
irradiated (i.e. Equation (8)) fuel samples, respectively. Here 𝜽𝑟 = �𝜽𝑓 ,𝜽𝑟−𝑓�, where 𝜽𝑟−𝑓 
represents parameters in the irradiated fuel conductivity model that are not in common with the 
fresh fuel conductivity model. Three analyses will be conducted: (a) Calibration of 𝜽𝑓 to fresh 
fuel conductivity data only, (b) Calibration of 𝜽𝑟 to irradiated fuel conductivity data only, and (c) 
Simultaneous calibration of 𝜽𝑓 and 𝜽𝑟−𝑓 to fresh and irradiated fuel data. Note that (c) facilitates 
discovery of parameter settings 𝜽𝑓 and 𝜽𝑟−𝑓, with uncertainty quantification, that are consistent 
with all available experimental data. The likelihood functions for these Analyses (a), (b) and (c) 
are given by Equations (13), (14), (15), respectively, as 
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𝐿𝑓 �𝜽𝑓�𝒚1
𝑓 , … ,𝒚𝑛𝑓

𝑓 � = �𝐿𝑓�𝜽𝑓�𝒚𝑖
𝑓�

𝑛𝑓

𝑖=1

, (13) 

𝐿𝑟�𝜽𝑟�𝒚1𝑟 , … ,𝒚𝑛𝑟
𝑟 � = �𝐿𝑟(𝜽𝑟|𝒚𝑖𝑟)

𝑛𝑟

𝑖=1

, (14) 

𝐿𝑓𝑟 �𝜽𝑓 ,𝜽𝑟−𝑓�𝒚1
𝑓 , … ,𝒚𝑛𝑓

𝑓 ,𝒚1𝑟 , … ,𝒚𝑛𝑟
𝑟 � = �𝐿𝑓�𝜽𝑓�𝒚𝑖

𝑓�

𝑛𝑓

𝑖=1

�𝐿𝑟�𝜽𝑓 ,𝜽𝑟−𝑓�𝒚𝑖𝑟�
𝑛𝑟

𝑖=1

, (15) 

where 𝑛𝑓 and 𝑛𝑟 are the numbers of fresh and irradiated fuel conductivity datasets, respectively. 
For each dataset, we assume the specified standard deviations in the 𝜺 error model are equal to 
one-third of 10% of the observed data values. 

3.1 Results 
The results presented in this section are organized around three sub-sections that pertain to three 
combinations of data sets and model parameters. Section 3.1.1 pertains to thermal conductivity 
data associated with fresh fuel samples, which is analyzed using the FRAPCON-3.4 thermal 
conductivity model given by Equation (2). Section 3.1.2 then pertains to thermal conductivity 
data associated with irradiated fuel samples, which is analyzed using the FRAPCON-3.4 thermal 
conductivity model given by Equation (8). Unique to the MCMC analysis, Section 3.1.3 pertains 
to the thermal conductivity data associated with both the fresh and irradiated fuel samples in a 
single MCMC analysis, using both FRAPCON-3.4 thermal conductivity models given by 
Equations (2) and (8). 

3.1.1 Data / Model for Fresh Fuel Samples 

Table 9 presents the mean values of the parameters generated by MCMC Analysis (a), in which 
the data / model associated with the fresh fuel samples only are considered. The most interesting 
conclusion from this table is that its results are nominally very similar to those associated with 
the GA optimization discussed in Section 2.2.1. That is, the third parameter (𝐸) varies 
considerably from the nominal value, while the remaining parameters vary by what may 
reasonably be considered an acceptable level (i.e. +/-10%). In effect, this lends credence to the 
discussion in Section 2.2.1, but the MCMC analysis provides considerably more information 
than the point estimate offered by the GA optimization. Table 10 does show that the mean values 
of the parameters produce an improvement in the overall predictive capability of the model (vis-
à-vis a reduction in the value of the 𝐸RMS(𝜽)). 
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Table 9: Mean parameter values from MCMC Analysis (a), allowing 50% deviation from the nominal 
parameter values 

Parameter 
Name 

Nominal 
Value 

MCMC Mean 
Value 

Percent 
Difference 

Standard 
Deviation 

Percent of 
Mean 

A (m-K/W) 0.0452 0.04696 3.9% 0.00149 3.2% 
B (m-K/W/K) 0.000246 0.0002360 4.1% 0.0000016 0.7% 

E (W-K/m) 3.50E+09 5.075E+09 45.0% 0.1605E+09 3.2% 
F (K) 16361 17513.2 7.0% 94.7 0.5% 

 

Table 10: Objective function evaluations associated with the mean parameter values from the MCMC 
analysis (fresh fuel parameters / data only) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 5.22 - 
MCMC (50%) 4.43 15.1% 

Arguably, the most attractive products of MCMC analyses that are not offered by many 
optimization-based analyses are the estimates of the posterior distributions associated with each 
parameter. For MCMC Analysis (a), the posteriors (univariate and bivariate) associated with the 
four parameters are presented in Figure 7, where the ordering of the parameters is left-to-right / 
top-to-bottom (e.g. posteriors associated with parameter 𝐴 are on the first row / column, and so 
on). 
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Figure 7: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior distributions 
for MCMC Analysis (a) 

There are two primary results of interest from Figure 7. The first is with regard to the third (𝐸) 
parameter, in that the univariate posterior distribution indicates that a more suitable value may lie 
outside of the prescribed +/-50%. While this is useful information and may warrant further 
investigation, it will be shown in Section 4.2.1 that the third parameter is the least influential 
with respect to “info-gap robustness” of the FRAPCON model. 

The second result of interest pertains to: the presence of a negative correlation between the first 
(𝐴) and second (𝐵) parameters and the presence of a positive correlation between the third (𝐸) 
and fourth (𝐹) parameters. The format of Equation (2) explains the presence of these 
relationships, but of interest is whether these relationships remain present in MCMC Analyses 
(b) and (c). A reasonable expectation is that the additional parameters associated with Equation 
(8) will reduce the influences of the first through fourth parameters on the conductivity, thereby 
diminishing the correlations. However, an equally reasonable expectation is that the combination 
of the fresh and irradiated data sets (i.e. MCMC Analysis (c)) will cause variances on the 
posteriors to reduce, possibly enhancing the correlations. 

3.1.2 Data / Model for Irradiated Fuel Samples 

Analogous to the GA optimization analysis discussed in Section 2.2.2, the results of Table 11 
present mean values for eight of the eleven parameters that deviate from the nominal values by 
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more than +/-10%, with six of those deviating by more than +/-30%. More disconcerting than the 
results of Table 11, however, is the substantial reduction in agreement of the model with the 
experimental data, as presented by the increased value of the 𝐸RMS(𝜽) in Table 12. 

Table 11: Mean parameter values from MCMC Analysis (b), allowing 50% deviation from the nominal 
parameter values 

Parameter 
Name 

Nominal 
Value 

MCMC Mean 
Value 

Percent 
Difference 

Standard 
Deviation 

Percent of 
Mean 

A (m-K/W) 0.0452 0.06433 42.3% 0.00334 5.2% 
B (m-K/W/K) 0.000246 0.0003230 31.3% 0.0000040 1.2% 

E (W-K/m) 3.50E+09 1.950E+09 44.3% 0.207E+09 10.6% 
F (K) 16361 12079.9 26.2% 192.5 1.6% 
f(Bu) 0.00187 0.000945 49.5% 0.000010 1.0% 

0.9 Factor 0.9 0.60 33.3% 0.15 24.9% 
0.04 Factor 0.04 0.042 5.0% 0.013 30.5% 

g(Bu)A 0.038 0.0373 1.8% 0.0089 23.7% 
g(Bu)B 0.28 0.289 3.2% 0.053 18.5% 
h(T) 396 350.2 11.6% 107.8 30.8% 

Q 6380 4418.9 30.7% 253.5 5.7% 

 

Table 12: Objective function evaluations associated with the mean parameter values from the MCMC 
analysis (irradiated fuel parameters / data only) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 7.19 - 
MCMC (50%) 9.41 -30.9% 

Figure 8 presents the posteriors associated with the MCMC analysis. Of concern are the rather 
dramatic changes of the posteriors associated with the first, third, and fourth parameters, as 
compared to those presented in Figure 7. The posterior associated with the first parameter 
changes from a Gaussian-like distribution to an Exponential-like distribution, and those 
associated with the third and fourth parameters change from “favoring” the upper to the lower 
bound. This is a particularly disturbing result, as it indicates that the two data sets associated with 
the fresh and irradiated fuel samples may not support the use of common values for the first four 
parameters of the FRAPCON model. In the very least, the independent calibrations of the model 
against data sets associated with fresh and irradiated fuel samples should be conducted with 
caution. 

Of additional concern is the fact that the seventh through eleventh parameters exhibit posteriors 
that, for the most part, span the entire permissible ranges of the parameter values. Nonetheless, 
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there exist two strong correlations between the eighth (𝑔(𝐵𝑢)A) and ninth (𝑔(𝐵𝑢)B) parameters 
(negative) and between the tenth (ℎ(𝑡)) and eleventh (𝑄) parameters (positive). Again, these 
correlations are explained by Equation (8), but it is again unknown whether or not these will 
persist in MCMC Analysis (c); for example, the correlation between the first (A) and second (B) 
parameters is negligible in this analysis, where it was relatively strong in the previous analysis. 

 

Figure 8: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior distributions 
for MCMC Analysis (b) 

As in Section 2.2.2, the authors employ the first four parameters presented in Table 11 to make 
predictions of the thermal conductivities associated with the fresh fuel samples. The result only 
goes to confirm the conclusion from Section 2.2.2 in that employing data associated with 
irradiated fuel samples alone for calibration of the FRAPCON model, does not yield a predictive 
model. 



Assessing the Effect of Parametric Uncertainty on the FRAPCON-3.4 Thermal Conductivity Model 
Milestone Deliverable for the NEAMS VU Program, October 2012 

22 

Approved for unlimited, public release on October XX, 2012 LA-UR-12-2XXXX, Unclassified 

Table 13: Objective function evaluations associated with the mean parameter values from the MCMC 
analysis (fresh fuel parameters, irradiated data) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 5.22 - 
MCMC (50%) 19.62 -275.8% 

3.1.3 Data / Models for Fresh and Irradiated Fuel Samples 

The attractiveness of this analysis is that it represents the only analysis reported upon that 
simultaneously considers all of the data / models. This is particularly interesting in that it allows 
for the comparison of the posteriors generated by this analysis with those of the previous two 
analyses, in which only the data / models for the fresh or irradiated fuel samples were considered 
separately. The first of these two comparisons is presented in Figure 9, where it is seen that the 
posteriors are nearly identical between MCMC Analyses (a) and (c). Likewise, the mean 
parameter values derived from both analyses are also nearly identical (see Table 9 and Table 16), 
which leads to nearly identical values reported for the 𝐸RMS(𝜽) associated with the fresh fuel 
samples (i.e. 𝐸RMS(𝜽) = 4.46 vs. 𝐸RMS(𝜽) = 4.43 in the MCMC Analysis (a)). 

  

Figure 9: Comparison of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions from MCMC Analyses (a) and (c) 
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Table 14: Objective function evaluations associated with the mean parameter values from the MCMC 
analysis (fresh fuel parameters, fresh and irradiated data) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 5.22 - 
MCMC (50%) 4.46 14.5% 

Of more interest, however, is the comparison of the posteriors associated with uncommon 
parameters (i.e. the fifth through eleventh parameters). For this, the authors turn to comparing the 
posteriors resulting from MCMC Analyses (b) and (c), which are presented in Figure 10. Most 
obvious is the fact that variances on the posteriors associated with the sixth through eleventh 
parameters are significantly reduced. That is, the inclusion of data associated with fresh fuel 
samples in this combined analysis, has a dramatic effect on the values of parameters that do not 
pertain to fresh fuel samples. Recalling the comparison plots between experimental data and 
nominal model predictions for both fresh and irradiated fuel samples (see Figure 3 and Figure 5, 
respectively), this is not, in fact, an unexpected result. As noted previously, the nominal model 
associated with the fresh fuel samples offers a reasonably accurate representation of the available 
data (see Figure 3). Analogously, MCMC Analysis (a) generated posteriors that were 
significantly more informative than the assumed Uniform priors. Turning now to the nominal 
model associated with the irradiated fuel samples, it was noted that the fit of the model to the 
data was very poor (see Figure 5), which translated into the rather uninformative posteriors 
generated by MCMC Analysis (b). 
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Figure 10: Comparison of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions from MCMC Analyses (a) and (c) 

 

Table 15: Objective function evaluations associated with the mean parameter values from the MCMC 
analysis (irradiated fuel parameters, fresh and irradiated data) 

Analysis 𝑬𝐑𝐌𝐒(𝜽) Relative 
Improvement (%) 

Nominal 7.19 - 
MCMC (50%) 7.80 -8.5% 

Returning to MCMC Analysis (c), these previous two MCMC analyses essentially explain the 
changes seen in the posteriors associated with the sixth through eleventh parameters. The 
uninformed posteriors associated with MCMC Analysis (b) do not indicate strong tendencies for 
particular parameter values. So, when the relatively informed posteriors associated with MCMC 
Analysis (a) do indicate such tendencies, the remaining seven, uninformed parameters that are 
not common between the data / models must “fit” into this new scenario, in which the first four 
parameters are effectively fixed. That said, these tightened posteriors and in particular, their 
means (see Table 16), are far from the associated nominal parameter values, which only confirms 
the authors’ conclusions from Sections 2.2.2 and 3.1.2. 
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Table 16: Mean parameter values from MCMC Analysis (c), allowing 50% deviation from the nominal 
parameter values 

Parameter 
Name 

Nominal 
Value 

MCMC Mean 
Value 

Percent 
Difference 

Standard 
Deviation 

Percent of 
Mean 

A (m-K/W) 0.0452 0.04997 10.6% 0.00159 3.2% 
B (m-K/W/K) 0.000246 0.0002330 5.3% 0.0000017 0.7% 

E (W-K/m) 3.50E+09 5.078E+09 45.1% 0.166E+09 3.3% 
F (K) 16361 17540.6 7.2% 97.9 0.6% 
f(Bu) 0.00187 0.000942 49.6% 0.000007 0.7% 

0.9 Factor 0.9 0.46 48.9% 0.01 1.4% 
0.04 Factor 0.04 0.060 50.0% 0.0004 0.7% 

g(Bu)A 0.038 0.0567 49.2% 0.0003 0.5% 
g(Bu)B 0.28 0.238 15.0% 0.003 1.1% 
h(T) 396 315.9 20.2% 88.6 28.1% 

Q 6380 8806.9 38.0% 396.2 4.5% 
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4 Info-Gap Decision Theory Analyses 
The final assessment technique highlighted in this report adopts a framework anchored in Info-
Gap Decision Theory (IGDT). Simply stated, IGDT offers a theoretical framework that aims to 
facilitate decision-making in the face of severe uncertainty [14]. A typical IGDT analysis aims to 
quantify the “info-gap robustness” of a series of decisions, ultimately providing the decision-
maker with a series of so-called “robustness curves.” These robustness curves illustrate, for each 
decision, the relationship (or trade-off) between the performance of a decision and the robustness 
against the uncertainty that contaminates the decision. Rounding out the analysis, the decision-
maker defines a minimum performance requirement (e.g. maximum error) that then imposes a 
ranking of the decisions according to how robustly they meet that performance requirement. 

For the purposes of this report, IGDT will be employed in a manner that is more analogous to a 
sensitivity analysis than a traditional info-gap analysis. However, as pointed out in [15], “the 
advantage of estimating sensitivities by way of an IGDT analysis is that we do not rely on 
approximating local or global derivatives or adjoints; IGDT produces sensitivities that are free of 
these limiting assumptions.” To this end, the following discussion serves to provide a more 
detailed overview of IGDT, where the authors are quick to note that much of the following 
discussion has already been presented in [15]. This discussion is necessarily more thorough than 
the discussions provided in Sections 2 and 3, given the authors’ perception that IGDT is a 
relatively new theory, particularly to the UQ community. Moreover, the authors will make every 
effort to maintain the general treatment of IGDT, as provided in [15], as such a treatment will 
facilitate the use of IGDT to solve a broader class of problems faced by UQ researchers. 
Interested readers are pointed toward [14] for a complete treatment of IGDT as well as the 
references contained in [16] for examples of how IGDT may be applied to various problems and 
problem types. 

Any IGDT analysis begins with three central questions: (1) “What is the decision that needs to be 
made?” (2) “Where is the uncertainty that affects the quality of this decision?” (3) “How is the 
quality (or performance) of this decision quantified?” In this study, the decision we wish to 
inform through the IGDT analysis is whether or not the FRAPCON model remains predictive 
when its empirically-derived parameters are allowed to vary. Note that the previous sentence also 
answers the second question. The mechanism by which IDGT represents uncertainty is formally 
referred to as an “info-gap model of uncertainty.” This representation is not necessarily a 
probabilistic model, as might be implied by the term “uncertainty.” As info-gap implies, 
uncertainty is simply represented as a gap in information, about which little is assumed other 
than how it relates to the "nominal model” of the system. Oftentimes, these nominal models are 
derived by analyzing experimental data, eliciting expert opinion, compiling consistent theories, 
or they may simply be educated guesses offered by the analyst. For the results reported upon 
herein, this nominal model corresponds to the FRAPCON model, as provided in [17]. Regardless 
of how the nominal model is defined, however, it is important for the reader to keep in mind that 
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such a model represents the situation in which no uncertainty is expected in the model 
parameters (a precariously optimistic view of the world, in the authors’ opinions). 

The third and most subjective of the three questions is defined here to be consistent with the 
objective function defined for the optimization-based assessment in Section 2, repeated here for 
convenience: 

𝐸RMS(𝜽) = ��
1
𝑚𝑛

��𝐾𝑖,𝑗
exp − 𝐾𝑖,𝑗mod(𝜽)�

2
𝑚𝑛

𝑗=1

�

1/2𝑛

𝑖=1

. (16) 

Note that while a measure of accuracy is being employed in this study, this need not always be 
the case for IGDT analyses. Generally speaking, performance could be defined as a response 
feature that is not to exceed a certain threshold value (e.g. the deflection of a cantilevered beam) 
or as relating to efficiency of a decision (e.g. the time required to exercise a computer code or 
code segment). 

Therefore, the IGDT analysis contained herein addresses the question: “What is the permissible 
level of ignorance about the parameters comprising the FRAPCON model that can be tolerated, 
which does not cause the predictions to exceed a maximum allowable level of error.” This 
question is obviously of considerable importance when asked within the context of model 
calibration, since, as mentioned in Section 2, such calibrations are often done without regard to 
what the parameter variations mean, leading to models that fit the experimental data but may 
exhibit little-to-no predictive capability. This discussion proceeds in Section 4.1 with a more 
formal treatment of the IGDT problem formulation. 

4.1 Problem Formulation 
The IGDT problem formulation begins generally, by considering a set of analytical models 𝓜, 
all of which describe the thermal conductivity of fresh and/or irradiated UO2 fuel pellets. From 
𝓜

 
are chosen 𝑀 models 𝓂𝐼(𝜽𝓂𝐼)∀𝐼 = 1,2, … ,𝑀, where 𝜽𝓂𝐼  is a column vector that collects 

the parameters for the 𝓂𝐼
th model, and 𝜽�𝓂𝐼  denotes the nominal model parameters associated 

with the 𝓂𝐼
th model. Note that the length of the vectors 𝜽𝓂𝐼  need not be consistent across the 𝑀 

analytical models. 

Having provided the above definitions, the info-gap model of uncertainty may be defined as 

𝓤(𝓂𝐼 ,𝛼) = �𝜽𝓂𝐼: �
𝜽𝑗
𝓂𝐼 − 𝜽�𝑗

𝓂𝐼

𝜽�𝑗
𝓂𝐼

� ≤ 𝛼,∀𝑗� ,𝛼 ≥ 0. (17) 

Equation (17) is representative of a class of info-gap models referred to as “envelope-bound” (or 
“error-bound”) info-gap models [14], and 𝓤(𝓂𝐼 ,𝛼) represents a nested set of 𝓂𝐼-type analytical 
models, whose parameters may assume values within the bounded interval defined by 𝛼: an 
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unknown scalar quantity, referred to as the “horizon-of-uncertainty.” This simply means that the 
extent to which the model parameters can deviate from their nominal values is, in actuality, 
unknown (though practically speaking, decision analysts will often set limits). Put another way, 
Equation (17) explicitly defines sets of model parameters from which the analyst may choose, 
given a fixed level of the horizon-of-uncertainty (or level of lack of knowledge). As the level of 
lack of knowledge increases, the set of potential parameter values also grows.  

As a further aid to the reader, a representative illustration of an envelope-bound info-gap model 
is presented in Figure 11 where it is seen that at 𝛼 = 𝛼2, the range of values that the parameter 
labeled 𝑏𝑖u may assume also includes that defined at 𝛼 = 𝛼1. Likewise, the range of values that 
𝑏𝑖u may assume at 𝛼 = 𝛼3, includes that defined at 𝛼 = 𝛼2. This illustration does not imply that 
an info-gap model of uncertainty is limited to nested intervals. The parameter 𝑏𝑖u could, for 
example, represent the standard deviation or entropy of a family of probability laws that describe 
variability. 

 

Figure 11: Representative illustration of the nested nature of Equation (17) 

With the info-gap model of uncertainty (i.e. Equation (17)) and the performance function (i.e. 
Equation (16)) defined, the central concepts of IGDT, namely “robustness” and “opportunity,” 
may be introduced. Simply stated, robustness is a reflection of the immunity of the model(s) to 
uncertainty in the model form or its parameters [14]. In the present context, highly robust models 
will have two characteristics: (a) acceptable agreement between the nominal response features 
predicted by 𝓂𝐼�𝜽�𝓂𝐼� and the experimental data and (b) little change in the evaluation of 
Equation (16) over the set defined by Equation (17). Conversely, analytical models with low 
levels of robustness violate one or both of the above characteristics. Clearly, higher robustness is 
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better than lower robustness at a similar level of performance; this observation offers the 
mechanism for model selection. 

Opportunity then relates to the potential to improve the performance of a model, given 
uncertainty in the functional form or parameters that define that model. Considering the problem 
of model calibration, the nominal model may be thought of as an initial, best guess at the values 
of the parameters. Subsequently, the calibration will lead to “improved” definitions of these 
parameters such that the model predictions better fit the available experimental data. Opportunity 
would uncover this potential, but it should not be considered as analogous to calibration; the 
intent of IGDT is only to inform the decision-making process. 

The robustness and opportunity functions are formally stated as 

𝛼�(𝓂𝐼 ,𝐸𝑐) = max
𝛼

� max
𝜽𝓂𝐼∈𝓤(𝓂𝐼,𝛼)

{𝐸RMS(𝜽)} ≤ 𝐸𝑐� (18) 

and 

𝛽̂(𝓂𝐼 ,𝐸𝑐) = max
𝛼

� min
𝜽𝓂𝐼∈𝓤(𝓂𝐼,𝛼)

{𝐸RMS(𝜽)} ≥ 𝐸𝑐�, (19) 

respectively. Equation (18) that defines the robustness function has two parts: an inner maximum 
and an outer maximum. The inner maximum reflects the worst-case performance of the family of 
models defined by 𝓂𝐼(𝜽𝓂𝐼), where the parameters 𝜽𝓂𝐼  are selected from the set 𝓤(𝓂𝐼 ,𝛼). 
Even though the robustness function identifies the worst-case performance within the family of 
models, the inequality of Equation (18) guarantees that this worst fidelity to data does not exceed 
the level 𝐸𝑐 of prediction error. Therefore, 𝐸𝑐, which is a threshold selected by the analyst, can 
be understood as being a requirement for prediction accuracy. Incorporating this inner maximum, 
the outer maximum is then interpreted as seeking the maximum value of the horizon-of-
uncertainty 𝛼, for which the worst-case performance of the analytical model does not exceed a 
critical level 𝐸𝑐. 

While this knowledge is useful, in a practical application, it can be of far more benefit to the 
decision analyst to plot the inner maximum for various values of the horizon-of-uncertainty 𝛼, 
producing the aforementioned “robustness curve.” Such curves then provide the decision analyst 
with insight as to how the worst-case performance of a family of models varies with increasing 
levels of lack of knowledge. In cases where multiple models are considered, the respective 
robustness curves may be overlaid allowing the decision analyst to weigh the merits of each 
model relative to others. An example of such a set of robustness curves is presented in Figure 12. 
The black, dashed line of Figure 12 follows the most robust model, starting with the model 
labeled 𝓂3, then switching over to the model labeled 𝓂2, as the horizon-of-uncertainty 𝛼 
increases. 
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Figure 12: Robustness curves for a set of five hypothetical models 

Despite being a hypothetical example, Figure 12 demonstrates several results that may arise from 
IGDT analyses. First is the idea that each of the five models demonstrates zero robustness when 
they assume the nominal model parameters. This is analogous to an analyst employing his/her 
best guess at the model parameters, executing each model once, and treating the model 
exhibiting the least error as the answer to the problem. It is the authors’ contention that such a 
stance represents a precariously optimistic view of the world, as epistemic uncertainty (i.e. a lack 
of complete knowledge about the behavior of the system) is present, but ignored when the model 
is analyzed only once. A reflection of this lack of knowledge is demonstrated in the non-zero 
errors produced by nominal models. That is, nominal models are incorrect, not necessarily 
because the analyst employed incorrect assumptions about the parameters, but possibly because 
the form of the model does not capture the full spectrum of system behavior. 

The second result illustrated by Figure 12 is that of model preference reversal. That is, as the 
level of uncertainty increases, the worst-case performances predicted by the different models do 
not change at the same rates, resulting in crossing of the robustness curves. It is noted that 
crossing does not always occur; robustness curves can follow parallel or divergent tracks such 
that crossing cannot occur. Examination of Figure 12 reveals three levels of lack of knowledge 
where crossing of the robustness curves occurs. Faced with this situation, the decision analyst 
may choose the model that satisfies the minimum performance requirement, but admits the most 
lack of knowledge, as compared to the other models. This choice guarantees that predictions of 
the model meet the minimum performance requirement, even if some of the model parameters 
are selected erroneously. Alternatively, the decision analyst may assume a level of uncertainty 
and subsequently choose the model that offers the least error at that uncertainty. It may, however, 
be argued that the latter interpretation of the robustness curve is less aligned with the spirit of 
IGDT. An important message associated with the idea of model preference reversal is that the 
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model that produces the least prediction error may not be the best choice, if one is also uncertain 
about the functional form or parameters that comprise the model. That is, the so-called optimal 
model may become sub-optimal in the face of uncertainty, when compared against an alternative 
modeling strategy. This goes to the authors’ earlier assertion that optimization-based calibration 
often does not provide a complete picture of the problem. 

Equation (19) presents the converse of the robustness function: the opportunity function. It is 
noted that the only difference between the Equations (18) and (19) is that the inner maximum in 
Equation (18) becomes an inner minimum in Equation (19). Translated into English, this inner 
minimum seeks the best-case performance of the analytical model defined by 𝓂𝐼(𝜽𝓂𝐼), where 
the parameters 𝜽𝓂𝐼  are selected from the set 𝓤(𝓂𝐼 ,𝛼). This presents the situation where 
uncertainty about the parameters comprising a model can improve the performance of that 
model, as compared to the nominal condition, a situation referred to as “windfalling” [14]. Such 
knowledge could be used to inform calibration studies by quantifying the extent to which 
prediction accuracy could potentially be improved. 

Ultimately, the question of whether to assess robustness or opportunity comes down to a 
question of whether the analyst is pessimistic or optimistic about his/her model. It is the authors’ 
opinion that more often than not, analysts will wish to examine robustness. Consider, for 
example, a model that approximates a physical system known to have considerable implications 
with respect to life-safety. In this situation, analyzing opportunity would be of little-to-no use, 
given that few decision-makers (e.g. regulatory agencies, policy-makers) would formulate 
policies from knowledge of best-case scenarios. With that said, having knowledge of the 
opportunity of a decision (e.g. a model) at various levels of lack of knowledge can present the 
analyst with valuable insight. 

4.1.1 Robustness of Individual Model Parameters 

The previous discussion provides a reasonably complete introduction to info-gap decision theory, 
but as mentioned, the results discussed in Section 4.2 emanate from a less-than-traditional 
application of IGDT. This does not, however, imply that the previous discussion is superfluous. 
On the contrary, the IGDT framework as outlined above is applicable to any problem where 
uncertainty clouds a decision aimed at selecting a model: an all too common in the scientific and 
engineering community. Moreover, in the absence of the context provided by the previous 
discussion, the following would have little meaning. 

The “less-than-traditional application of IGDT” primarily refers to an extension of the 
framework outlined previously to also compute robustness and opportunity functions that are 
specific to a single parameter. To accomplish this, the info-gap model in Equation (17) is 
modified such that all of the uncertain model parameters are held fixed at their nominal values, 
except for the 𝑘th parameter. Equation (20) presents this modified info-gap model of uncertainty 
as 
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,𝛼 ≥ 0. (20) 

While this imposes additional computational expense to the info-gap analysis (especially for 
models having many parameters), evaluating Equations (18) and (19) subject to the constraint 
imposed by Equation (20) allows the analyst to examine the influence of individual uncertain 
parameters on the robustness or opportunity function. The results of such an exercise can be 
viewed as analogous to a main-effect sensitivity analysis, where the sensitivity is assessed with 
respect to the performance function of Equation (16). It is worth repeating that the advantage of 
estimating sensitivities by way of an IGDT analysis is that there is no reliance on approximating 
local or global derivatives (or adjoints). Moreover, the IGDT treatment of uncertainty is both 
general and flexible in that most any type of uncertainty (probabilistic or otherwise) can be 
handled by way of an IGDT analysis. 

4.2 Results 
As for Section 2.2, the results presented in this section are organized around two sub-sections 
that pertain to two combinations of data sets and model parameters. Section 4.2.1 pertains to 
thermal conductivity data associated with fresh fuel samples, which is analyzed using the 
FRAPCON-3.4 thermal conductivity model given by Equation (2). Section 4.2.2 then pertains to 
thermal conductivity data associated with irradiated fuel samples, which is analyzed using the 
FRAPCON-3.4 thermal conductivity model given by Equation (8). 

4.2.1 Data / Model for Fresh Fuel Samples 

This discussion begins by considering the effect on performance (i.e. fidelity to data) when all of 
the four empirically-derived parameters contained in Equation (2) are permitted to vary. Figure 
13 illustrates the robustness curves that result from IGDT analyses using the info-gap models of 
uncertainty given by Equations (17) and (20). Note that for all of the figures in this section, the 
parameters are ordered as in Section 2.2; the table below is provided for clarity. 
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Table 17: Parameter labeling scheme for Section 4.2.1 

Parameter 
Number 

Parameter 
Name 

1 A (m-K/W) 
2 B (m-K/W/K) 
3 E (W-K/m) 
4 F (K) 

The primary finding from this analysis is that above approximately 𝛼 ≅ 15% the overall “worst 
case performance”5 of the FRAPCON model (solid, blue line) degrades severely, going from 
𝐸RMS(𝜽) ≅ 14 at 𝛼 ≅ 15% to 𝐸RMS(𝜽) ≅ 28 at 𝛼 ≅ 25%. This degradation in performance 
appears to be, in large part, tied to the variation of the fourth parameter, which is made more 
obvious by the “influence curves” presented in Figure 14. 

 

Figure 13: Robustness curves from the four-parameter case 

 

                                                 
5 The authors note that the phrase “worst case performance” is conditioned on a particular value of 𝛼. Technically-
speaking, a worst case performance does not exist in the context of IGDT, as 𝛼 is defined simply as an unbounded 
scalar that modulates the space(s) defined by the info-gap models of uncertainty. Practically-speaking, of course, 
evaluating Equations (15) and (16) requires the definition of 𝛼, so the authors use “worst case performance” with 
this fact in mind. 
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Figure 14: Influence curves from the four-parameter case 

Effectively, influence is computed by normalizing the robustness curves that result from the 
IGDT analyses associated with Equation (20). To begin, the inner maximum from Equation (18) 
is denoted as 𝛾(𝓂𝐼 ,𝛼), where it is pointed out that this quantity (for various values of 𝛼) is, in 
fact, the quantity plotted in Figure 13 as the solid, blue line (“Allrobust”). The analogous inner 
maximum associated with IGDT analysis of the 𝑘th parameter is then denoted as 𝛾𝑘(𝓂𝐼 ,𝛼). 
Finally, a formal statement of influence is given as 

𝐼(𝓂𝐼 ,𝛼) =
𝛾𝑘(𝓂𝐼 ,𝛼)

∑ 𝛾𝑘(𝓂𝐼,𝛼)𝑁
𝑘=1

. (21) 

where 𝑁 is the number of parameters considered in the IGDT analyses associated with Equation 
(20). Examining Figure 14, it is seen that at approximately 𝛼 ≅ 15%, the fourth parameter 
becomes more influential (and the second parameter becomes less influential), eventually 
accounting for approximately 62% of the summation ∑ 𝛾𝑘(𝓂𝐼 ,𝛼)𝑁

𝑘=1  at 𝛼 = 50%. Recalling the 
results from Section 2.2.1 in which GA-optimized value of the fourth parameter deviated only 
slightly from its nominal value (even when the allowable deviation was set at 50%), the results 
illustrated by Figure 14 appear to be consistent, in that significant variation of the fourth 
parameter may lead to poor performance. The converse of this hypothesis also seems likely, as 
the parameter that varied the farthest from its nominal value in the GA optimization (i.e. the third 
parameter) also exhibits the least influence in Figure 14. 
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In light of this knowledge, the authors chose to execute a similar analysis as the above, except 
that the fourth parameter was not included in the analysis. Arguably, the most important 
conclusion from this re-analysis derives from Figure 15, in that the performance degradation of 
the FRAPCON model is less dramatic as compared to the four-parameter case. This is not an 
unexpected result, however, as removing one or more parameters that are correlated with one or 
more of the remaining parameters will likely result in an improvement of performance (due to 
the reduced space over which the optimization is performed). 

This analysis also represents an example of how the decision-maker could use the results of a 
previous IGDT analysis to inform a follow-on analysis. In the present case, the authors asserted 
that a majority of the performance degradation of the FRAPCON model was due to variation of 
the fourth parameter, where the obvious action of such a finding would be to reduce or eliminate 
the allowable variation of the fourth parameter. Having taken such an action, however, the 
decision-maker may yet be interested in how this alters the overall robustness of the model (i.e. 
“How does the solid, blue line from Figure 13 change?”). It is expected that the overall 
robustness of the model would improve, but the degree to which this the robustness improves is 
left to question in the absence of a second IGDT analysis. 

 

Figure 15: Robustness curves from the three-parameter case 
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Analogously to the previous section, this discussion begins by considering the effect on 
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contained in Equation (8) are permitted to vary. Figure 16 illustrates the robustness curves that 
result from IGDT analyses using the info-gap models of uncertainty given by Equations (17) and 
(20). Note that for all of the figures in this section, the parameters are ordered as in Section 2.2; 
the table below is provided for clarity. 

Table 18: Parameter labeling scheme for Section 4.2.2 

Parameter 
Number 

Parameter 
Name 

1 A (m-K/W) 
2 B (m-K/W/K) 
3 E (W-K/m) 
4 F (K) 
5 f(Bu) 
6 0.9 Factor 
7 0.04 Factor 
8 g(Bu) A 
9 g(Bu) B 

10 h(T) 
11 Q 

Upon examination Figure 16, a similar trend to that observed in the previous section is also 
observed here, in that the performance of the FRAPCON model degrades severely as uncertainty 
is introduced into the IGDT analysis. At first glance, this degradation again appears to follow as 
a result of varying the fourth parameter, but there are distinguishing characteristics that set this 
analysis apart from that of the previous section. 
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Figure 16: Robustness curves from the eleven-parameter case 

 

Figure 17: Influence curves from the eleven-parameter case 

First, the uncertainty at which the fourth parameter becomes more influential (and the second 
parameter becomes less influential), relative to the other parameters (see Figure 17), is higher 
than in the previous section: 𝛼 ≅ 35% in this section vs. 𝛼 ≅ 15% in Section 4.2.1. This is most 
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probably a result of the fact that the model considered in this section contains an additional seven 
parameters. Related to this, the performance degradations associated with the second and fourth 
parameters at 𝛼 = 50% are not nearly as severe as in the previous section: for the second 
parameter, 𝐸RMS(𝜽) ≅ 17 vs. 𝐸RMS(𝜽) ≅ 41 and for the fourth parameter, 𝐸RMS(𝜽) ≅ 52 vs. 
𝐸RMS(𝜽) ≅ 90. It is again noted that the performances referred to are “worst case 
performances,” conditioned on a horizon of uncertainty of 𝛼 = 50%. 

Nevertheless, when 𝛼 > 35%, the influence of the fourth parameter appears to be significant, 
and for that reason, the authors again executed an IGDT that did not include the fourth 
parameter, the results of which are presented in Figure 18. The primary finding of this analysis is 
simply that even in the absence of varying the fourth parameter, the degradation in performance 
of the FRAPCON model is still severe. Possibly with the exception of the second parameter, 
such degradation cannot be attributed to a particular parameter. In fact, the robustness curves in 
Figure 18 exhibit very high robustness (i.e. near negligible sensitivity to parametric uncertainty), 
yielding performances at 𝛼 = 50% that are only a few percent worse than the nominal 
performance of the model. 

This finding is something of a double-edged sword, in that it illustrates that the FRAPCON 
model is robust to variation in individual parameters, but very sensitive to the simultaneous 
variation of multiple parameters. It seems that a reasonable follow-on study would be to consider 
combinations of parameters to determine whether varying a particular combination of parameters 
contributes to the majority of the performance degradation reported upon herein.  

 

Figure 18: Robustness curves from the ten-parameter case 
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5 Preliminary Assessment of BISON Nuclear Fuel Performance 
Code 

BISON [5] is a finite element-based, nuclear fuel performance code, applicable to a variety of 
fuel forms including light water reactor fuel rods, TRISO particle fuels, and metallic rod and 
plate fuels. It solves the fully-coupled equations of thermomechanics and species diffusion, for 
either two-dimensional axisymmetric or three-dimensional geometries. Fuel models are included 
to describe temperature- and burnup-dependent thermal properties, fission product swelling, 
densification, thermal and irradiation creep, fracture, and fission gas production and release. 
Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad 
materials as well. Models are also available to simulate gap heat transfer, mechanical contact, 
and the evolution of the gap / plenum pressure with plenum volume, gas temperature, and fission 
gas addition. BISON is based on the MOOSE framework [6] and can therefore efficiently solve 
problems using standard workstations or very large high-performance computers. 

The fuel performance modeled within BISON is driven by complex mechanisms that are only 
complicated by the effects of irradiation. It is very difficult to study a single model or even a 
subset of models, because all of the models interact with each other. The authors considered 
studying the fission gas release and thermal conductivity models initially, but due to the 
interdependencies, it was decided that the following six models within BISON would be studied. 
These are: 

• Fission product swelling; 
• Fuel relocation; 
• Thermal and irradiation creep; 
• Gap heat transfer; 
• Thermal conductivity; 
• Fission gas release. 

Multiple parameters from each of six models are selected, for a total of 64 parameters. The 
numbers of parameters from each model are presented in Table 19. Unfortunately, the number of 
code execution failures6 produced by varying the parameters associated with the fission product 
swelling and thermal and irradiation creep models further reduced the study to include only four 
models (i.e. fuel relocation, gap heat transfer7, thermal conductivity, and fission gas release). 

                                                 
6 A failure is denoted as a crash of the code due to an MPI error or an execution time that exceeds 20 minutes, where 
the nominal model required only 3 minutes to successfully execute. 
7 It is further noted that two of the four parameters associated with the gap heat transfer model could also not be 
varied, due to an inordinate number of failures, so only two parameters are considered for the gap heat transfer 
model. 
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Table 19: Selected models and number of parameters 

Model Number of 
Parameters 

Fission product swelling 5 
Fuel relocation 5 

Thermal and irradiation creep 11 
Gap heat transfer 4 

Thermal conductivity 13 
Fission gas release 26 

For the purposes of this report, the authors will not discuss the details of these models, but will 
instead focus on the parameter screening studies performed as part of this preliminary 
assessment. For the details of these (and other) models implemented in BISON, the readers are 
directed to [5] and the references contained therein. It is noted however, that while the latest 
thermal conductivity model in FRAPCON-3.4 was examined in the previous sections of this 
report, this is not the model currently available in BISON. Instead, BISON employs the thermal 
conductivity models from [2] and [3], which are given as 

𝐾95,fresh =
100

7.5408 + 17.692𝑇 + 3.6142𝑇2
+

6400
𝑇5/2 exp �−

16.35
𝑇

�, (22) 

for the fresh fuel and 

𝐾95,irrad = 𝐾95,fresh𝜅1𝑑𝜅1𝑝𝜅2𝑝𝜅4𝑟 , (23) 

for the irradiated fuel. In Equation (23), the multipliers 𝜅1𝑑, 𝜅1𝑝, 𝜅2𝑝, and 𝜅4𝑟 account for 
dissolved fission products, precipitated solid fission products, pore and fission-gas bubbles, and 
radiation damage, respectively. For the details of these expressions, the readers are directed to 
[3] and the references contained therein. Table 20 through Table 23 provide the parameters (with 
nominal values), for each of the four models considered by the screening study discussed below. 

Table 20: Parameters (with nominal values) varied in the BISON gap heat transfer model 

Parameter 
Number 

Parameter Name Nominal 
Value 

1 ROUGH_COEFF 2.57 
2 CONTACT_COEFF 10.0 
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Table 21: Parameters (with nominal values) varied in the BISON fuel relocation model 

Parameter 
Number 

Parameter 
Name 

Nominal 
Value 

1 FUEL_RELOC_1 0.8 
2 FUEL_RELOC_2 0.005 
3 FUEL_RELOC_3 0.3 
4 FUEL_RELOC_4 0.2 
5 FUEL_RELOC_5 0.3 

 

Table 22: Parameters (with nominal values) varied in the BISON thermal conductivity model (“FINK_” 
prefix denotes fresh fuel samples, “LUCUTA_” denotes multipliers for irradiated fuel samples) 

Parameter 
Number 

Parameter Name Nominal 
Value 

1 FINK_EQN19_1 1.00E-05 
2 FINK_EQN19_2 1.0E-07 
3 FINK_EQN19_3 1.0E-08 
4 FINK_EQN19_4 5E-07 
5 FINK_EQN19_5 0.287 
6 FINK_EQN19_6 0.626 
7 LUCUTA_EQN7a 0.5 
8 LUCUTA_EQN7b_1 1.00E+07 
9 LUCUTA_EQN7b_2 0.001 
10 LUCUTA_EQN10b_1 0.3017 
11 LUCUTA_EQN10b_2 1.0 
12 LUCUTA_EQN11b 24 
13 LUCUTA_EQN14f 0.2 
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Table 23: Parameters (with nominal values) varied in the BISON fission gas release model (“GR_” prefix 
denotes gas release, “DC_” prefix denotes diffusion coefficient) 

Parameter 
Number 

Parameter Name Nominal 
Value 

1 GR_GRAIN_RAD 1.00E-05 
2 GR_RESOL_RATE 1.0E-07 
3 GR_RESOL_DEPTH 1.0E-08 
4 GR_BUBBLE_RAD 5E-07 
5 GR_BUBBLE_SHAPE_FACT 0.287 
6 GR_SURF_TENSION 0.626 
7 GR_FRAC_COVERAGE 0.5 
8 GR_EXT_PRESSURE 1.00E+07 
9 GR_RELEASE_FRAC 0.001 

10 GR_FRAC_YIELD 0.3017 
11 GR_CALIB_FACTOR 1.0 
12 DC_BUBBLE_PER_FRAG 24 
13 DC_FRAG_RANGE 6.0E-06 
14 DC_FRAG_INFLUENCE 1.0E-09 
15 DC_GAS_ATOM_DIFF_COEFF_1 7.60E-10 
16 DC_GAS_ATOM_DIFF_COEFF_2 -35000 
17 DC_GAS_ATOM_DIFF_COEFF_3 1.41E-25 
18 DC_GAS_ATOM_DIFF_COEFF_4 -13800 
19 DC_GAS_ATOM_DIFF_COEFF_5 2.00E-40 
20 DC_INTRA_BUBBLE_RAD_1 5.0E-10 
21 DC_INTRA_BUBBLE_RAD_2 106.0 
22 DC_INTRA_BUBBLE_RAD_3 -8703 
23 DC_INTRA_CAPTURE_RATE 4.0 
24 DC_INTRA_RESOL_RATE 3.03 
25 DC_B_DRREF 4E-14 
26 DC_FRREF 9.21E+18 

The remainder of this section focuses on a main effects and linear interaction effects screening 
conducted on the parameters listed in Table 20 through Table 23. The aim of this screening is to 
remove parameters that have little-to-no effect on the variance of the feature(s) of interest. For 
this analysis, the features of interest are the lower and upper thermocouple temperatures 
predicted by BISON at the end of the analysis (i.e. through “beginning of life” of the Halden 
IFA-432 Rod 1 fuel rod [18]). 

The reduction in the number of parameters realized by the screening study is intended to permit a 
more thorough sensitivity analysis, where the remaining parameters are varied in order to 
determine statistical significance for future studies. Unfortunately, the sensitivity analysis that 
was conducted for this report was found to be inconclusive. It is the authors’ opinion that more 
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fundamental issues, which are beyond the scope of this report, need to be addressed before a full 
calibration / validation study can be conducted on BISON. This is not necessarily a surprising 
result given that BISON is still a development code (that is very much actively being developed 
both by researchers at INL and by others). 

Designs of (computer) experiments are constructed for each of the four models, allowing ten 
percent deviation from the nominal parameter values. The relatively small number of parameters 
associated with the gap heat transfer and fuel relocation models (i.e. 2 and 5, respectively) 
permitted the use of two-level, full factorial designs to study the statistical significance of the 
associated parameters. However, the relatively large number of parameters associated with the 
thermal conductivity and fission gas release models necessitated an alternate strategy. To this 
end, the authors constructed two-level, fractional factorial designs, that were constrained by the 
number of BISON executions (in this case, 64). These latter designs were generated using the 
MATLABTM functions fracfactgen() and fracfact(). Figure 19 through Figure 21 present 
overviews of the main effects analyses associated with each of the four models. 

     

Figure 19: Results of main effects analysis from varying BISON gap heat transfer (left) and fuel 
relocation (right) parameters 
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Figure 20: Results of main effects analysis from varying BISON thermal conductivity parameters 

 

 

Figure 21: Results of main effects analysis from varying BISON fission gas release parameters 
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reduce the order of the fitted model using the Akaike Information Criterion, in order to avoid 
overfitting. This final model is then examined and parameters are selected that contribute 
substantially to explaining the output variability, either as main effects or as linear interactions 
(or both); note that this process is performed for both features of interest. For the last step, while 
it is true that statistical significance was used as a guide, but it is not necessarily true that all 
statistically significant parameters were chosen. In one case for example, a variable 
(CONTACT_COEFF) was selected because it had a larger effect size than the other variable in 
the model, but it was not statistically significant in the main effects model. 

Table 24: Parameters varied for the sensitivity analysis conducted on the BISON fuel performance code 

Parameter 
Number 

Model Name Parameter Name 

1 

Fuel Relocation 

FUEL_RELOC_1 
2 FUEL_RELOC_2 
3 FUEL_RELOC_3 
4 FUEL_RELOC_5 
5 Gap Heat Transfer CONTACT_COEFF 
6 

Fission Gas 
Release 

GR_GRAIN_RAD 
7 GR_RESOL_RATE 
8 GR_RESOL_DEPTH 
9 GR_BUBBLE_RAD 
10 GR_BUBBLE_SHAPE_FACT 
11 GR_SURF_TENSION 
12 GR_FRAC_COVERAGE 
13 GR_FRAC_YIELD 
14 GR_CALIB_FACTOR 
15 DC_FRAG_INFLUENCE 
16 DC_GAS_ATOM_DIFF_COEFF_1 
17 DC_GAS_ATOM_DIFF_COEFF_4 
18 DC_GAS_ATOM_DIFF_COEFF_5 
19 DC_INTRA_BUBBLE_RAD_3 
20 DC_INTRA_CAPTURE_RATE 
21 DC_INTRA_RESOL_RATE 
22 

Thermal 
Conductivity 

FINK_EQN19_1 
23 FINK_EQN19_4 
24 LUCUTA_EQN7a 
25 LUCUTA_EQN11b 

 

  



Assessing the Effect of Parametric Uncertainty on the FRAPCON-3.4 Thermal Conductivity Model 
Milestone Deliverable for the NEAMS VU Program, October 2012 

47 

Approved for unlimited, public release on October XX, 2012 LA-UR-12-2XXXX, Unclassified 

6 Conclusion 
This report represents a collection of three methodologies aimed at assessing the predictive 
capability of the empirical thermal conductivity model adopted by the nuclear fuel performance 
code, FRAPCON-3.4. The first of these methodologies adopted an optimization-based approach, 
by way of a genetic algorithm, to infer the optimal model parameters for predicting thermal 
conductivity data associated with the fresh and irradiated fuel samples, separately. While much 
insight was gained as to the behavior of the models with respect to the available data, the primary 
conclusion was that the thermal conductivities associated with the fresh fuel samples could not 
be accurately predicted when employing the data / model from the irradiated fuel samples. 

This result was confirmed and expounded upon by the second methodology that adopted a 
Bayesian approach to infer posterior probabilities of the parameters by way of Markov Chain 
Monte Carlo (MCMC) analyses. The unique facet of this approach was that it considered the 
simultaneous calibration of the two models to all of the available data, which served to confirm 
the hypothesis that independent calibration of the models / data should be done with caution, 
especially when considering the model / data associated with the irradiated fuel samples. The 
issues associated with this model (i.e. Equation (8)) lead the authors to question whether or not 
the model is of the correct mathematical form. As noted in Section 1.1, many authors have 
proposed variants of Equation (8), all of which have fit the available data to one degree or 
another. Therefore, future efforts will focus on addressing this issue, possibly by proposing a 
model that departs from Equation (8), so as to better predict the overall behavior exhibited by the 
available data. 

The third and final methodology adopted Info-Gap Decision Theory (IGDT) to explore a 
relatively new concept for quantifying uncertainty of empirically-derived models: info-gap 
robustness. Info-gap robustness, in essence, quantifies the sensitivities of a model to parametric 
uncertainty, without relying on approximations of global or local derivatives (or adjoints). 
Furthermore, this uncertainty quantification is performed within the context of a performance 
metric and yields an intuitive mechanism (i.e. the robustness curve) by which analysts may both 
understand and convey the effects of parametric uncertainties in their model. Generally speaking, 
the conclusions drawn from this effort were consistent with those of the other two 
methodologies. However, one of the distinguishing characteristics of the analyses was the unique 
way in which the results were framed. 

The final section of this report offered a preliminary assessment of Idaho National Laboratory’s 
nuclear fuel performance code, BISON. A large number of code execution failures produced by 
varying the parameters associated with the six models selected for this study yielded somewhat 
inconclusive results. Future BISON-focused studies will attempt to address the issues that likely 
impacted the progress of this preliminary assessment, keeping in mind that further development 
of the code may be the simplest means by which to generate the desired results. 
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Appendix A – Experimental Data from Fresh Fuel Samples 
In the following tables, the captions refer to “% TD;” this is percent of theoretical density. 

Table A-25: Conductivity data from Christensen et al. [19], % TD = 94.0% 

Temperature, Kexp, 
K W/m-K 

1312.00 2.87 
1389.00 2.87 
1432.00 2.70 
1496.00 2.72 
1552.00 2.71 
1587.00 2.56 
1612.00 2.57 
1656.00 2.80 
1747.00 2.48 
1838.00 2.59 

 

Table A-26: Conductivity data from Godfrey et al. [20], % TD = 93.4% 

Temperature, Kexp,  Temperature, Kexp, 
K W/m-K  K W/m-K 

574.00 5.40  570.00 5.14 
673.00 4.75  572.00 5.11 
767.00 4.32  673.00 4.59 
877.00 3.90  673.00 4.56 
976.00 3.56  774.00 4.08 

1074.00 3.27  774.00 4.10 
675.00 4.61  875.00 3.71 
870.00 3.79  875.00 3.73 
869.00 3.83  973.00 3.42 
971.00 3.49  973.00 3.42 

1072.00 3.18  1071.00 3.17 
1165.00 2.99  1071.00 3.16 
1173.00 2.98  1173.00 2.95 
1279.00 2.77  1271.00 2.75 
1282.00 2.76  1323.00 2.68 
572.00 5.19  576.00 5.23 
870.00 3.74  576.00 5.23 
870.00 3.69  671.00 4.69 
872.00 3.68  671.00 4.69 

1171.00 2.89  671.00 4.71 
1175.00 2.87  874.00 3.82 
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Table A-27: Conductivity data from Bates [21], % TD = 98.4% 

Temperature Kexp  Temperature Kexp 
K W/m-K  K W/m-K 

539.00 6.50  2102.00 2.25 
539.00 6.57  2174.00 2.26 
756.00 4.82  2187.00 2.25 
761.00 5.02  2373.00 2.49 
895.00 4.11  2373.00 2.64 
891.00 4.35  2280.00 2.29 
994.00 3.83  2285.00 2.42 
995.00 3.91  1599.00 2.37 

1180.00 3.28  1601.00 2.49 
1185.00 3.13  1609.00 2.32 
1325.00 2.85  1360.00 2.83 
1325.00 2.89  1453.00 2.42 
1489.00 2.51  1562.00 2.48 
1491.00 2.55  1649.00 2.37 
1666.00 2.40  1750.00 2.39 
1655.00 2.37  1907.00 2.13 
1778.00 2.24  2005.00 2.10 
1780.00 2.13  2007.00 2.31 
1863.00 2.19  2109.00 2.19 
1866.00 2.19  2104.00 2.27 
1977.00 2.10  2195.00 2.35 
1972.00 2.24  2295.00 2.47 
2093.00 2.32  2384.00 2.42 

 

Table A-28: Conductivity data from Bates [21], % TD = 98.4% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

571.00 5.72 
 

1270.00 2.80 
577.00 6.03 

 
1269.00 2.87 

577.00 6.16 
 

1270.00 2.81 
661.00 5.33 

 
1361.00 2.55 

682.00 5.41 
 

1361.00 2.63 
786.00 4.48 

 
1361.00 2.59 

784.00 4.45 
 

1361.00 2.63 
785.00 4.54 

 
1471.00 2.54 

866.00 4.15 
 

1472.00 2.67 
867.00 4.15 

 
1469.00 2.26 

961.00 3.73 
 

1569.00 2.40 
961.00 3.63 

 
1571.00 2.41 

961.00 3.96 
 

1569.00 2.46 
1069.00 3.35 

 
1683.00 2.33 

1071.00 3.31 
 

1683.00 2.37 
1069.00 3.51 

 
1758.00 2.30 

1171.00 3.04 
 

1756.00 2.19 
1174.00 3.07 

 
1760.00 2.28 

1173.00 3.24 
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Table A-29: Conductivity data from Bates [21], % TD = 98.4% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

673.00 5.53 
 

678.00 5.33 
1283.00 2.75 

 
776.00 4.88 

673.00 5.42 
 

775.00 4.96 
1100.00 3.60 

 
891.00 4.17 

1089.00 3.40 
 

895.00 4.30 
1090.00 3.54 

 
968.00 3.88 

1099.00 3.41 
 

973.00 3.96 
813.00 4.86 

 
1087.00 3.45 

797.00 4.80 
 

1081.00 3.48 
507.00 6.46 

 
1172.00 3.28 

583.00 6.40 
 

1173.00 3.16 
676.00 5.42 

 
1292.00 2.85 

679.00 5.51 
 

1291.00 2.81 
763.00 5.01 

 
1377.00 2.65 

764.00 5.13 
 

1380.00 2.63 
873.00 4.50 

 
1473.00 2.54 

876.00 4.29 
 

1477.00 2.59 
979.00 3.95 

 
1578.00 2.30 

981.00 3.96 
 

1584.00 2.45 
1065.00 3.74 

 
1673.00 2.23 

1072.00 3.69 
 

1679.00 2.20 
1188.00 3.17 

 
1769.00 2.09 

1187.00 3.36 
 

1792.00 2.24 
1277.00 3.09 

 
1786.00 2.19 

1285.00 3.19 
 

1595.00 2.06 
1284.00 3.28 

 
1596.00 2.41 

1071.00 3.70 
 

1400.00 2.61 
880.00 4.57 

 
1399.00 2.56 

879.00 4.52 
 

1166.00 3.29 
879.00 4.52 

 
1079.00 3.44 

678.00 5.34 
 

1085.00 3.50 
573.00 6.18 

 
847.00 4.43 

583.00 5.89 
 

847.00 4.45 
680.00 5.36 

 
577.00 5.98 

681.00 5.24 
 

553.00 6.22 
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Table A-30: Conductivity data from Gibby [22], % TD = 95.8% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

575.00 6.24 
 

1031.00 3.94 
578.00 6.36 

 
1031.00 3.84 

586.00 6.28 
 

1071.00 3.66 
587.00 5.87 

 
1080.00 3.47 

588.00 5.63 
 

1080.00 3.55 
665.00 5.12 

 
1204.00 3.24 

675.00 5.20 
 

1204.00 3.34 
679.00 5.31 

 
1280.00 3.13 

690.00 5.12 
 

1288.00 2.99 
846.00 4.30 

 
1288.00 2.92 

846.00 4.40 
 

1289.00 2.99 
852.00 4.53 

 
1323.00 3.01 

853.00 4.65 
 

1335.00 2.90 
865.00 4.30 

 
1384.00 2.92 

865.00 4.40 
 

1390.00 2.80 
893.00 4.29 

 
1395.00 2.70 

908.00 4.29 
 

1399.00 2.80 
907.00 4.20 

 
1412.00 2.95 

964.00 3.84 
 

1491.00 2.78 
964.00 3.92 

 
1502.00 2.44 

969.00 4.02 
 

1508.00 2.62 
969.00 4.12 

 
1510.00 2.66 

1000.00 3.70 
   
 

Table A-31: Conductivity data from Weilbacher [23], % TD = 98.0% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

974.00 3.58 
 

2284.00 2.45 
974.00 3.81 

 
2379.00 2.45 

1171.00 3.09 
 

2379.00 2.54 
1171.00 3.25 

 
2484.00 2.61 

1377.00 2.62 
 

2483.00 2.73 
1376.00 2.85 

 
2577.00 2.74 

1575.00 2.31 
 

2577.00 2.86 
1575.00 2.51 

 
2674.00 2.91 

1778.00 2.18 
 

2674.00 3.02 
1776.00 2.39 

 
2773.00 3.10 

1979.00 2.19 
 

2773.00 3.21 
1980.00 2.33 

 
2875.00 3.32 

2180.00 2.26 
 

2875.00 3.44 
2182.00 2.39 

 
3025.00 3.66 

2281.00 2.31 
 

3027.00 3.83 
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Table A-32: Conductivity data from Hobson et al. [24], % TD = 94.9% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

547.00 5.76 
 

1500.00 2.81 
607.00 5.41 

 
1532.00 2.84 

642.00 5.33 
 

1621.00 2.63 
732.00 4.96 

 
1638.00 2.69 

788.00 4.63 
 

1749.00 2.52 
834.00 4.45 

 
1760.00 2.58 

885.00 4.26 
 

1807.00 2.46 
944.00 4.13 

 
1871.00 2.60 

995.00 4.01 
 

1913.00 2.48 
1046.00 3.86 

 
1993.00 2.45 

1083.00 3.75 
 

2016.00 2.52 
1133.00 3.62 

 
2059.00 2.47 

1150.00 3.51 
 

2154.00 2.43 
1175.00 3.53 

 
2154.00 2.49 

1279.00 3.23 
 

2243.00 2.47 
1330.00 3.15 

 
2336.00 2.51 

1392.00 3.04 
 

2412.00 2.63 
1449.00 2.97 

 
2503.00 2.66 
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Table A-33: Conductivity data from Ronchi et al. [25], % TD = 95.0% 

Temperature Kexp 
 

Temperature Kexp 
K W/m-K 

 
K W/m-K 

568.00 5.23 
 

761.00 4.15 
569.00 5.02 

 
771.00 4.03 

572.00 4.99 
 

772.00 4.06 
572.00 4.93 

 
772.00 4.00 

575.00 4.88 
 

773.00 4.00 
577.00 4.97 

 
776.00 4.00 

578.00 4.94 
 

791.00 3.92 
586.00 5.06 

 
807.00 3.98 

611.00 4.72 
 

823.00 3.90 
611.00 4.78 

 
826.00 3.87 

612.00 4.72 
 

845.00 3.78 
612.00 4.72 

 
845.00 3.72 

613.00 4.78 
 

846.00 3.69 
613.00 4.72 

 
861.00 3.78 

614.00 4.69 
 

880.00 3.67 
614.00 4.69 

 
893.00 3.64 

614.00 4.72 
 

902.00 3.61 
614.00 4.75 

 
903.00 3.58 

614.00 4.72 
 

911.00 3.62 
614.00 4.75 

 
925.00 3.53 

614.00 4.78 
 

938.00 3.50 
615.00 4.75 

 
953.00 3.44 

615.00 4.69 
 

978.00 3.33 
615.00 4.72 

 
981.00 3.33 

615.00 4.69 
 

989.00 3.33 
615.00 4.69 

 
1010.00 3.28 

615.00 4.72 
 

1032.00 3.25 
615.00 4.75 

 
1051.00 3.20 

621.00 4.76 
 

1081.00 3.15 
668.00 4.60 

 
1889.00 1.92 

674.00 4.51 
 

1997.00 2.21 
687.00 4.37 

 
1998.00 2.07 

689.00 4.37 
 

2020.00 2.03 
690.00 4.58 

 
2059.00 2.02 

691.00 4.34 
 

2060.00 1.87 
712.00 4.44 

 
2094.00 1.93 

728.00 4.23 
 

2095.00 1.79 
732.00 4.23 

 
2122.00 2.13 

737.00 4.21 
 

2123.00 2.12 
738.00 4.24 

 
2147.00 2.21 

750.00 4.15 
 

2178.00 2.46 
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Table A-34: Conductivity data from Ronchi et al. [25] (continued), % TD = 95.0% 

Temperature Kexp 
K W/m-K 

2180.00 2.40 
2197.00 2.19 
2197.00 2.16 
2238.00 2.18 
2268.00 2.11 
2268.00 2.14 
2272.00 1.82 
2299.00 2.24 
2299.00 2.29 
2355.00 1.96 
2394.00 2.02 
2394.00 2.18 
2396.00 2.44 
2425.00 2.00 
2429.00 2.01 
2438.00 1.98 
2438.00 2.37 
2456.00 2.28 
2457.00 2.22 
2500.00 2.35 
2500.00 2.23 
2500.00 2.26 
2501.00 1.98 
2504.00 2.11 
2545.00 2.59 
2561.00 1.99 
2623.00 2.21 
2628.00 2.26 
2632.00 2.53 
2634.00 2.08 
2638.00 2.21 
2640.00 2.13 
2669.00 2.38 
2672.00 2.43 
2677.00 2.48 
2682.00 2.59 
2768.00 2.68 
2782.00 2.48 
2786.00 2.87 
2802.00 2.77 
2873.00 2.79 
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Table A-35: Conductivity data from Goldsmith and Douglas [26], % TD = 90.5% 

Temperature Kexp 
K W/m-K 

670.00 4.20 
870.00 3.49 

1070.00 2.91 
1270.00 2.46 
670.00 4.40 
870.00 3.69 

1070.00 3.10 
1270.00 2.59 

 

Table A-36: Conductivity data from Goldsmith and Douglas [26], % TD = 93.1% 

Temperature Kexp 
K W/m-K 

670.00 4.61 
870.00 3.88 

1070.00 3.30 
1270.00 2.75 
670.00 4.55 
870.00 3.80 

1070.00 3.24 
1270.00 2.66 

 

Table A-37: Conductivity data from Goldsmith and Douglas [26], % TD = 94.7% 

Temperature Kexp 
K W/m-K 

670.00 5.08 
870.00 4.26 

1070.00 3.61 
1270.00 3.01 

 

Table A-38: Conductivity data from Goldsmith and Douglas [26], % TD = 95.2% 

Temperature Kexp 
K W/m-K 

670.00 4.85 
870.00 4.16 

1070.00 3.46 
1270.00 2.95 
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Table A-39: Conductivity data from Goldsmith and Douglas [26], % TD = 95.8% 

Temperature Kexp 
K W/m-K 

670.00 4.98 
870.00 4.10 

1070.00 3.56 
1270.00 3.01 

 

Table A-40: Conductivity data from Goldsmith and Douglas [26], % TD = 96.0% 

Temperature Kexp 
K W/m-K 

670.00 5.57 
670.00 5.19 
870.00 4.38 

1070.00 3.70 
1270.00 3.12 

 

Table A-41: Conductivity data from Goldsmith and Douglas [26], % TD = 97.7% 

Temperature Kexp 
K W/m-K 

670.00 5.43 
870.00 4.60 

1070.00 3.87 
1270.00 3.23 

 

Table A-42: Conductivity data from Goldsmith and Douglas [26], % TD = 98.2% 

Temperature Kexp 
K W/m-K 

670.00 5.31 
870.00 4.44 

1070.00 3.75 
1270.00 3.16 
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Table A-43: Conductivity data from Goldsmith and Douglas [26], % TD = 98.6% 

Temperature Kexp 
K W/m-K 

670.00 5.53 
670.00 5.59 
870.00 4.68 
870.00 4.67 
870.00 4.70 

1070.00 3.96 
1070.00 3.94 
1070.00 3.94 
1270.00 3.27 
1270.00 3.26 
1270.00 3.32 
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Appendix B – Experimental Data from Irradiated Fuel Samples 
In the following tables, the captions refer to “% TD” and “% BU;” these are percent of 
theoretical density and percent burn-up, respectively. 

Table B-44: Conductivity data from Lucuta et al. [3], % TD = 94.0%, % BU = 65.366% 

Temperature Kexp 
K W/m-K 

631.21 2.96 
676.40 2.85 
720.27 2.79 
773.71 2.69 
827.20 2.63 
883.45 2.59 
937.00 2.59 
983.65 2.56 

1041.28 2.53 
1087.93 2.50 
1142.82 2.46 
1188.08 2.42 
1236.07 2.36 
1281.36 2.34 
1330.73 2.28 
1478.93 2.21 

 

Table B-45: Conductivity data from Lucuta et al. [3], % TD = 94.0%, % BU = 65.366% 

Temperature Kexp 
K W/m-K 

631.44 3.19 
719.06 2.95 
775.21 2.81 
828.66 2.72 
882.09 2.60 
939.75 2.60 
980.94 2.60 

1039.92 2.54 
1092.05 2.50 
1141.44 2.46 
1236.10 2.39 
1286.87 2.36 
1332.16 2.34 
1385.67 2.31 
1477.63 2.27 
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Table B-46: Conductivity data from Lucuta et al. [3], % TD = 86.0%, % BU = 65.366% 

Temperature Kexp 
K W/m-K 

606.48 2.18 
675.38 2.13 
730.51 2.08 
792.52 2.05 
842.11 2.05 
894.48 2.02 
937.19 2.02 
989.55 1.99 

1037.77 1.99 
1091.50 2.00 
1143.83 2.07 
1187.90 2.13 
1243.01 2.13 
1299.50 2.12 
1350.48 2.11 
1398.70 2.10 
1451.07 2.05 
1499.30 2.04 
1554.41 2.02 
1606.78 1.97 

 

Table B-47: Conductivity data from Lucuta et al. [3], % TD = 86.0%, % BU = 65.366% 

Temperature Kexp 
K W/m-K 

605.06 2.30 
675.35 2.22 
729.10 2.16 
793.87 2.12 
842.12 2.05 
895.86 2.01 
941.32 2.02 
989.55 1.99 

1043.28 2.00 
1095.63 2.00 
1146.59 2.07 
1193.41 2.13 
1241.62 2.15 
1298.12 2.12 
1353.22 2.13 
1400.08 2.10 
1452.44 2.07 
1500.67 2.06 
1555.79 2.02 
1608.15 1.98 
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Table B-48: Conductivity data from Beyer and Lanning [27], % TD = 96.0%, % BU = 63.000% 

Temperature Kexp 
K W/m-K 

294.29 3.46 
374.29 3.64 
474.29 3.52 
574.29 3.24 
671.43 2.99 
774.29 2.84 
871.43 2.71 

 

Table B-49: Conductivity data from Beyer and Lanning [27], % TD = 86.0%, % BU = 63.000% 

Temperature Kexp 
K W/m-K 

286.04 2.11 
351.77 2.17 
423.20 2.18 
548.88 2.07 
660.28 1.97 
771.68 1.86 
874.54 1.88 

 

Table B-50: Conductivity data from Lucuta et al. [3], % TD = 95.3%, % BU = 40.000% 

Temperature Kexp 
K W/m-K 

676.26 2.77 
835.85 2.60 

1073.23 2.42 
1273.11 2.25 
1471.63 2.13 
1674.29 1.96 

 

Table B-51: Conductivity data from Lucuta et al. [3], % TD = 95.3%, % BU = 40.000% 

Temperature Kexp 
K W/m-K 

676.31 2.53 
876.00 2.35 

1072.97 2.21 
1272.79 2.11 
1472.61 2.01 
1675.03 1.80 
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Table B-52: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 34.000% 

Temperature Kexp 
K W/m-K 

500.00 2.93 
550.00 2.85 
600.00 2.77 
650.00 2.69 
700.00 2.62 
750.00 2.55 
800.00 2.47 
850.00 2.40 
900.00 2.34 
950.00 2.29 

1000.00 2.24 
1050.00 2.20 
1100.00 2.15 
1150.00 2.10 
1200.00 2.05 
1250.00 1.97 
1300.00 1.92 
1350.00 1.90 
1400.00 1.90 
1450.00 1.90 

 

Table B-53: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 34.000% 

Temperature Kexp 
K W/m-K 

500.00 3.13 
550.00 3.00 
600.00 2.88 
650.00 2.78 
700.00 2.68 
750.00 2.58 
800.00 2.50 
850.00 2.41 
900.00 2.34 
950.00 2.27 

1000.00 2.25 
1050.00 2.16 
1100.00 2.04 
1150.00 1.98 
1200.00 1.91 
1250.00 1.90 
1300.00 1.87 
1350.00 1.85 
1400.00 1.80 
1450.00 1.80 
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Table B-54: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 33.000% 

Temperature Kexp 
K W/m-K 

500.00 3.09 
550.00 2.97 
600.00 2.85 
650.00 2.75 
700.00 2.65 
750.00 2.56 
800.00 2.47 
850.00 2.39 
900.00 2.32 
950.00 2.24 

1000.00 2.18 
1050.00 2.12 
1100.00 2.06 
1150.00 2.00 
1200.00 1.95 
1250.00 1.88 
1300.00 1.85 
1350.00 1.82 
1400.00 1.78 
1450.00 1.74 

 

Table B-55: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 34.000% 

Temperature Kexp 
K W/m-K 

500.00 3.12 
550.00 2.97 
600.00 2.84 
650.00 2.73 
700.00 2.62 
750.00 2.51 
800.00 2.42 
850.00 2.33 
900.00 2.25 
950.00 2.18 

1000.00 2.11 
1050.00 2.04 
1100.00 1.98 
1150.00 1.92 
1200.00 1.86 
1250.00 1.81 
1300.00 1.76 
1350.00 1.72 
1400.00 1.67 
1450.00 1.63 
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Table B-56: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 55.000% 

Temperature Kexp 
K W/m-K 

500.00 2.41 
550.00 2.36 
600.00 2.32 
650.00 2.27 
700.00 2.23 
750.00 2.19 
800.00 2.15 

 

Table B-57: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 51.000% 

Temperature Kexp 
K W/m-K 

500.00 2.68 
550.00 2.60 
600.00 2.52 
650.00 2.45 
700.00 2.38 
750.00 2.31 
800.00 2.25 
850.00 2.19 
900.00 2.13 
950.00 2.08 

1000.00 2.02 
1050.00 1.96 
1100.00 1.91 
1150.00 1.87 
1200.00 1.82 
1250.00 1.78 
1300.00 1.75 
1350.00 1.72 
1400.00 1.69 
1450.00 1.68 
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Table B-58: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 51.000% 

Temperature Kexp 
K W/m-K 

500.00 2.44 
550.00 2.37 
600.00 2.32 
650.00 2.26 
700.00 2.21 
750.00 2.16 
800.00 2.11 
850.00 2.06 
900.00 2.02 
950.00 1.98 

1000.00 1.94 
1050.00 1.90 
1100.00 1.86 
1150.00 1.83 
1200.00 1.80 
1250.00 1.79 
1300.00 1.79 
1350.00 1.78 
1400.00 1.77 
1450.00 1.77 

 

Table B-59: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 51.000% 

Temperature Kexp 
K W/m-K 

500.00 3.46 
550.00 3.30 
600.00 3.15 
650.00 3.01 
700.00 2.88 
750.00 2.77 
800.00 2.66 
850.00 2.56 
900.00 2.47 
950.00 2.38 

1000.00 2.30 
1050.00 2.23 
1100.00 2.16 
1150.00 2.09 
1200.00 2.03 
1250.00 1.97 
1300.00 1.92 
1350.00 1.87 
1400.00 1.82 
1450.00 1.77 
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Table B-60: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 82.000% 

Temperature Kexp 
K W/m-K 

500.00 2.18 
550.00 2.16 
600.00 2.14 
650.00 2.12 
700.00 2.10 
750.00 2.08 
800.00 2.07 

 

Table B-61: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 96.000% 

Temperature Kexp 
K W/m-K 

500.00 2.06 
550.00 2.04 
600.00 2.03 
650.00 2.01 
700.00 1.99 
750.00 1.97 
800.00 1.95 

 

Table B-62: Conductivity data from Ronchi et al. [1], % TD = 95.0%, % BU = 92.000% 

Temperature Kexp 
K W/m-K 

500.00 2.50 
550.00 2.42 
600.00 2.34 
650.00 2.27 
700.00 2.20 
750.00 2.14 
800.00 2.08 
850.00 2.02 
900.00 1.97 
950.00 1.92 

1000.00 1.87 
1050.00 1.82 
1100.00 1.78 
1150.00 1.74 
1200.00 1.70 
1250.00 1.66 
1300.00 1.62 
1350.00 1.59 
1400.00 1.56 
1450.00 1.52 
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Table B-63: Conductivity data from Ohira and Itagaki [4], % TD = 95.0%, % BU = 60.976% 

Temperature Kexp 
K W/m-K 

675.00 2.25 
873.00 2.25 
873.00 2.16 
874.00 2.09 

1075.00 2.14 
1075.00 2.12 
1271.00 2.12 
1270.00 2.08 
1272.00 2.01 
1475.00 2.01 
1473.00 1.96 
1474.00 1.88 
1669.00 1.95 
1673.00 1.83 
1672.00 1.77 

 

Table B-64: Conductivity data from Amaya et al. [28], % TD = 96.5% 

Temperature Kexp % BU 
K W/m-K 

 1273 2.72 8.294 
1273 2.64 8.294 
1273 2.54 16.674 
1273 2.40 38.963 
1273 2.59 42.333 
1273 2.37 44.406 
1273 2.43 48.553 
1273 2.23 49.849 
1273 2.27 52.959 
1273 2.04 55.724 
1273 2.31 59.698 
1273 2.99 0.000 
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Appendix C – Supplemental Data from GA Optimization Analyses 
Below are presented the experimental data / model prediction comparison plots and parameter 
tables for the GA optimization analyses, allowing ten percent deviation from the nominal 
parameter values, associated with Sections 2.2.1 and 2.2.2. 

 

Figure C-22: Comparison between experimental data and GA-optimized model predictions for thermal 
conductivity, allowing 10% deviation from the nominal parameter values 
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Figure C-23: Comparison between experimental data and GA-optimized model predictions for thermal 
conductivity, allowing 10% deviation from the nominal parameter values 
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Table C-65: GA-optimized parameter values, allowing 10% deviation from the nominal parameter values 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.04972 10.0% 

B (m-K/W/K) 0.000246 0.0002420 1.6% 
E (W-K/m) 3.50E+09 3.156E+09 9.8% 

F (K) 16361 15649.3 4.4% 
f(Bu) 0.00187 0.001683 10.0% 

0.9 Factor 0.9 0.810 10.0% 
0.04 Factor 0.04 0.0440 10.0% 

g(Bu) A 0.038 0.0418 10.0% 
g(Bu) B 0.28 0.273 2.6% 

h(T) 396 435.6 10.0% 
Q 6380 5916.4 7.3% 

 

Table C-66: GA-optimized parameter values, allowing 50% deviation from the nominal parameter values 
(bold entries denote parameters that are held fixed at the values given in Table 4) 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.04889 8.2% 

B (m-K/W/K) 0.000246 0.0002400 8.9% 
E (W-K/m) 3.50E+09 3.850E+09 10.0% 

F (K) 16361 16296.4 0.4% 
f(Bu) 0.00187 0.000991 47.0% 

0.9 Factor 0.9 0.450 50.0% 
0.04 Factor 0.04 0.060 50.0% 

g(Bu)A 0.038 0.0570 50.0% 
g(Bu)B 0.28 0.2749 1.8% 
h(T) 396 198.4 49.9% 

Q 6380 6584.3 3.2% 
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Table C-67: GA-optimized parameter values, allowing 10% deviation from the nominal parameter values 
(bold entries denote parameters that are held fixed at the values given in Table 4) 

Parameter 
Name Nominal Value GA-Optimized 

Value 
Relative 

Difference (%) 
A (m-K/W) 0.0452 0.04889 8.2% 

B (m-K/W/K) 0.000246 0.0002400 8.9% 
E (W-K/m) 3.50E+09 3.850E+09 10.0% 

F (K) 16361 16296.4 0.4% 
f(Bu) 0.00187 0.001683 10.0% 

0.9 Factor 0.9 0.810 10.0% 
0.04 Factor 0.04 0.044 10.0% 

g(Bu)A 0.038 0.0418 10.0% 
g(Bu)B 0.28 0.2828 1.0% 
h(T) 396 356.4 10.0% 

Q 6380 6792.8 6.5% 
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Appendix D – Supplemental Data from MCMC Analyses 
This section presents the results of ten MCMC analyses in which some data sets were held out 
from the analysis (as opposed to the analyses presented in Section 3, in which all data sets were 
included). A total of ten, randomly selected data sets were held out from each of the ten analyses: 
five data sets associated with the fresh fuel samples and five data sets associated with the 
irradiated fuel samples. The data sets held out from each analysis are given in Table D-68. 

Table D-68: Data sets held out from each of the ten “Holdout Cases” 

 HC-1 HC-2 HC-3 HC-4 HC-5 HC-6 HC-7 HC-8 HC-9 HC-10 

Fr
es

h 
Fu

el
 

Sa
m

pl
es

 

1 2 1 7 2 2 2 4 1 6 
7 4 3 8 4 4 13 7 5 7 
10 6 9 9 5 7 14 8 6 9 
16 7 10 12 11 10 15 13 13 12 
18 15 13 16 14 16 16 18 18 13 

Ir
ra

di
at

ed
 

Fu
el

 S
am

pl
es

 3 11 3 3 5 1 3 4 2 2 
5 15 4 14 8 5 5 6 5 11 
6 17 5 15 9 6 11 8 15 12 
14 19 12 17 13 14 12 10 18 16 
16 20 20 21 18 21 21 11 20 19 

Table D-69 presents, for each of the ten “Holdout Cases,” the average RMS errors associated 
with each data set, after the calibration has been conducted using the remaining twenty-nine data 
sets (i.e. those not listed in Table D-68). Generally speaking, the average RMS errors presented 
in Table D-69 demonstrate that holding out data from the calibration does not dramatically 
degrade the quality of the calibrated models. Figure D-24 through Figure D-33 present the 
posteriors (univariate and bivariate) for each of the ten “Holdout Cases.” Comparing these results 
to the right panel of Figure 10, further confirms that the authors’ assertion that the calibrated 
models do not deviate dramatically from that generated by employing all thirty-nine data sets. 
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Table D-69: Average RMS error for each data set, for each the ten “Holdout Cases” 

 HC-1 HC-2 HC-3 HC-4 HC-5 HC-6 HC-7 HC-8 HC-9 HC-10 

Fr
es

h 
Fu

el
 

Sa
m

pl
es

 

0.30 0.09 0.25 0.21 0.10 0.11 0.09 0.18 0.29 0.27 
0.33 0.22 0.15 0.35 0.24 0.21 0.12 0.35 0.35 0.12 
0.17 0.40 0.45 0.37 0.31 0.34 0.12 0.39 0.45 0.42 
0.39 0.34 0.28 0.21 0.09 0.20 0.39 0.13 0.19 0.21 
0.42 0.43 0.13 0.32 0.12 0.35 0.38 0.43 0.50 0.13 

Ir
ra

di
at

ed
 

Fu
el

 S
am

pl
es

 0.34 0.22 0.38 0.34 0.60 0.52 0.33 0.34 0.56 0.55 
0.64 0.30 0.39 0.18 0.09 0.63 0.63 0.30 0.61 0.22 
0.25 0.23 0.64 0.27 0.13 0.25 0.18 0.09 0.24 0.28 
0.15 0.14 0.20 0.22 0.26 0.15 0.24 0.16 0.19 0.35 
0.33 0.09 0.14 0.28 0.20 0.28 0.26 0.18 0.11 0.17 

Avg 
(HC) 0.33 0.25 0.30 0.27 0.21 0.30 0.27 0.26 0.35 0.27 

           
Avg 

(No HC) 0.22 0.27 0.22 0.24 0.27 0.23 0.24 0.26 0.24 0.23 
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Figure D-24: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 1 
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Figure D-25: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 2 
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Figure D-26: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 3 
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Figure D-27: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 4 
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Figure D-28: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 5 
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Figure D-29: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 6 
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Figure D-30: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 7 
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Figure D-31: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 8 
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Figure D-32: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 9 
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Figure D-33: Estimates of univariate (diagonal) and bivariate (off-diagonal) marginal posterior 
distributions for Holdout Case 10 
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Appendix E – Supplemental Data from IGDT Analyses 
Below are presented the influence curves from the follow-on IGDT analyses associated with 
Sections 4.2.1 and 4.2.2. 

 

Figure E-34: Influence curves from the three-parameter case 
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Figure E-35: Influence curves from the ten-parameter case 
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